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I have already sent you the panel data Regression Econometrics. Now I am sending you 

the details regarding time series econometrics. 

 

Research Process flow chart 

Define Research Problem – Review Related Theories –Review Previous Research Findings – 

Determine Research Objectives and questions – Research Design – Data Collection – 

Analysing data by applying various statistical and econometrical tools and techniques – 

interpretation – Conclusion & recommendation. 

 

Statistical Model Selection (time series) on the base of data Stationarity 

Unit Root 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

So, time series is a collection of observations of variables collected through repeated 

measurements over time. A time series allows the researcher to identify presumed changes 

within a population over time. It can also show the impact of cyclical, seasonal and irregular 

events on the data item being measured. Time series can be classified into two different 

types: stock and flow. 

A stock series is a measure of certain attributes at a point in time. A flow series is a series 

which is a measure of activity over a given period. An original time series shows the actual 

movements in the data over time and includes any movements due to trend, cyclical, seasonal 

and irregular events. 
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One approach to the analysis of time series data involves an attempt to identify the 

component factors that influence each of the values in a series. This identification procedure 

is called decomposition. To understand decomposition, we start with the four components of 

a time series: 

1. Trend: The trend is the component that represents the underlying growth (or decline) in a 

time series. For example, share price changes, technological changes, inflation, productivity 

increases etc. The trend is denoted by capital T. 

2. Cyclical: The cyclical component is a series of wave like fluctuations or cycles of more 

than one year’s duration. For example, changing economic conditions generally produce 

cycles and it is denoted by Capital C. 

In practice, cycles are often difficult to identify and are frequently regarded as part of the 

trend. In this case, the underlying general growth (or decline) component is called the trend-

cycle and denoted by T. We use the notation for the trend because the cyclical component 

often cannot be separated from the trend. 

3. Seasonal: Seasonal fluctuations are typically found in quarterly, monthly, or weekly data. 

Seasonal variation refers to a more or less stable pattern of change that appears annually and 

repeats itself year after year. Seasonal patterns occur because of the influence of the weather 

or because of calendar-related events such as school vacations and national holidays and 

denoted by capital S. 

4. Irregular: The irregular component consists of unpredictable or random fluctuations. 

These fluctuations are the result of a myriad/numerous of events that individually may not be 

particularly important but whose combined effect could be large and denoted by capital I. 

Now the question is how the components of a time series relate to the original series? 

So, this task is accomplished by specifying a model (mathematical) or equation that expresses 

the time series variable Y in terms of the components T, C, S and I. 

Here, Y is the time series variable. There are two approaches/models that treats the observed 

value (Yt) of a time series to the trend (Tt), seasonal (St) and irregular (It) components. 

Additive Components Model: Yt = Tt + St + It (This model works best when the time series 

being analyzed has roughly the same variability throughout the length of the series or in other 

words, all the values of the series fall essentially within a band of constant width centered on 

the trend) 

And Multiplicative Components Model: Yt = Tt * St * It (This model works best when the 

variability of the time series increases with the level. That is the values of the series spread 

out as the trend increases, and the set of observations have the appearance of a megaphone or 

funnel. It is possible to convert a Multiplicative decomposition to an Additive decomposition 

by working with the logarithms of the data. 

Take log on both sides of the Multiplicative Components Model and we get: 

logY = log(T * S * I) = logT + logS + logI 



For business and economic time series, it is best to view the trend (or trend cycle) as 

smoothly changing overtime. Rarely can we realistically assume that the trend can be 

represented by some simple function such as a straight line over the whole period for which 

the time series is observed. However, it is often convenient to fit a trend curve to a time series 

for two reasons: (1) it provides some indication of the general direction of the observed 

series, and (2) it can be removed from the original series to get a clearer picture of the 

seasonality. 

If the trend appears to be roughly linear (linearity is important here), that is, it increases or 

decreases like a straight line, then it may be represented by the following equation: 

tTt 10
ˆ  +=  

Here, 
tT̂ is the predicted value for the trend at time t. the symbol t used for the independent 

variable represents time and ordinarily assumes integer values 1, 2, 3,……… corresponding 

to consecutive time periods. The slope coefficient beta (β1) is the average increase or 

decrease in T for each one-period increase in time. 

Time trend equations, including the straight-line trend, can be fit to the data using the method 

of least squares. 

Now consider additional Trend Curves: The life cycle of a new product has generally three 

stages – introduction, growth and maturity & saturation. Here, a straight-line trend would not 

work here. In this situation a curve other than a straight line, is needed to model the trend 

over a new-product life cycle. So, here such type of situation can be captured by modeling 

the quadratic trend or exponential trend curve as below: 
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Actually, the trends curve models are based on the following assumptions: 

1. Selection of the correct trend curve 2. The curve that fits the past is indicative of the future. 

These assumptions suggest that judgment and expertise play a substantial role in the selection 

and use of a trend curve. To use a trend curve for forecasting, we must be able to argue that 

the correct trend has been selected and that, in all likelihood/possibility/probability/chance, 

the future will be like the past. 

Seasonally Adjusted Data: 

After the seasonal component has been isolated, it can be used to calculate seasonally 

adjusted data. For an additive decomposition, the seasonally adjusted data are computed by 

substracting the seasonal component as below: 

Yt – St = Tt + It 

For a multiplicative decomposition, the seasonality adjusted data are computed by dividing 

the original observation by the seasonal component as under: 
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Most economic time series published by Govt. agencies are seasonally adjusted because 

seasonal variation is not of primary interest. Rather, it is general pattern of economic activity, 

independent of the normal seasonal fluctuations, that is of interest. 

Cyclical and Irregular Variations 

Cycles are long-run, wave like fluctuations that occur most frequently in macro indicators of 

economic activity. It is assumed that cycles don’t have a consistent pattern. However, some 

insight into the cyclical behavior of a time series can be obtained by eliminating the trend and 

seasonal components to give, using a multiplicative decomposition as under: 
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A moving average can be used to smooth out the irregularities, It, leaving the cyclical 

component, Ct. to eliminate the centering problem encountered when a moving average with 

an even number of time periods is used, the irregularities are smoothed using a moving 

average with an odd number of time periods. Finally, the irregular component is estimated by 
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The irregular component represents the variability in the time series after the other 

components have been removed. It is sometimes called the residual or error. With a 

multiplicative decomposition, both the cyclical and irregular components are expressed as 

indices. One reason for decomposing a time series is to isolate and examine the components 

of the series. 

Key Formulas: 

1. Time series additive decomposition: Yt = Tt + St + It  

2. Time series Multiplicative Components decomposition: Yt = Tt * St * It 

3. Linear trend: tTt 10
ˆ  +=  

4. Quadratic trend: 2
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5. Exponential Trend: 
t

tT 10=  

6. Seasonally adjusted data (multiplicative decomposition): tt
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7. Cyclical-irregular component (multiplicative decomposition): tt
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8. Irregular component (multiplicative decomposition): 
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9. Current purchasing power of $1: 
)(  Pr 

100

CPIIndexiceConsumer
 

10. Deflated dollar value: (Dollar value) x (Purchasing power of $1) 

Data Transformation 

1. Log Transformation: The log transformation yields appealing interpretation of 

coefficients and model. The interpretation is good for small changes only. The log 

transformation makes coefficients invariant to rescaling. For example, lnY looks more 

normal than Y. But, lnY has a narrower range than Y. 

When or not to log? 

a. Don’t take log zeroes or negative values  

b. Don’t take log dummies 

c. Potentially large monetary variables are often logged (revenue, income, wages etc) 

d. Large integer values are often logged (population, number of employees, number of 

students) 

e. Small integer values are usually not (age, education, number of children) 

g. Percentages can be logged or not 

How to choose? 

Sometimes it is unclear which form to choose, and thus we have to: 

i. Rely on economic theory and previous studies 

ii. Think about what is implied by particular functional forms for the relevant range of the 

variables 

iii. Don’t compare R2 or AdjR2 if the dependent variable is different. 

iv. Even in the case of the same dependent variable, e.g. linear and log-linear, beware of 

selecting the functional form on the sole basis of R2 and AdjR2. Selecting the functional form 

on the basis of fit only gives you an equation that works well for your particular sample. 

2. Differencing: Stationarity is an issue for time series data and is a pre-condition to perform 

regression analysis. Non-stationary time series data should be converted into stationary data 

by taking differences. The time series data which is stationary after first differencing is called 

stationary in order one I(1). 

3. Percentage Change: It is calculated by subtracting previous one from the current one and 

dividing the difference by the previous one. Here, a base year is used for comparison of the 

two or more time series data levels. The arbitrary level of 100 is selected so that percentage 

changes (either increase or decrease) over year can be easily depicted. Any year can be 

chosen as base year, but generally recent years are chosen and the other observations are 

adjusted based on the base year. 

 



Regression Analysis 

Regression is an econometric technique for estimating the relationships among the variables. 

It helps to analyze how the typical value of the dependent variable changes when any one of 

the independent variables changes, while the other things are remained constant (ceteris 

paribus). Linear regression estimates how much Y changes when X changes one unit or one 

percent. The main purpose of linear regression analysis is to assess associations between 

dependent and independent variables. 

In my previous classes I have discussed simple or bi-variate linear regression model and 

their properties. How to estimate reg. model. Significance of constant term and slope 

coefficient and how we will compute them and interpret. How we will forecast 

population regression line by using sample regression line. How we will analyze 

ANOVA and interpretation etc. So I am not going to that part. I will discuss here from 

multiple regression equation. 

Multiple or Multivariate Regression Model 

In simple linear regression the relationship between a single independent variable and a 

dependent variable in investigated. The relationship between two variables frequently allows 

one to accurately predict the dependent variable from knowledge of the independent variable. 

Unfortunately, many real-life forecasting situations are not so simple. More than one 

independent variable is usually necessary in order to predict a dependent variable accurately. 

Regression models with more than one independent variable are called multiple regression 

models. So, multiple regressions involve the use of more than one independent variable to 

predict the changes of the dependent variable. Here each slope coefficient measures the rate 

of change in the mean value of dependent variable for a unit change in the value of an 

independent variable, holding the values of the other independent variables constant. Here, 

one important thing is that how many independent variables should be included in the 

regression equation depends on the theory, research objective and assumptions. 

Now consider the Statistical model for Multiple Regression as under: 

Yi = α0 + β1Xi + β2M2 + β3N3 +………+ βkθi + ei 

Now, consider the practical example of multiple linear regression model. Suppose it is 

assumed that the impact of COVID-19 on economic growth. This is the problem you want to 

examine and thus we have considered relevant information regarding independent variable 

and you develop the model as under: 

GDP = α + β1attack + β2death + β3infected + β4cure + e 

Where, alpha value is the constant and you have to estimate both alpha and slope coefficients 

by estimating the multiple regression equation by applying standard OLS technique. 

Here, error or disturbance components denoted by e represents the deviations of the response 

from the true relation. They are unobservable random variables accounting for the effects of 

other factors on the response. Here, the errors are assumed to be independently and each is 

normally distributed with 0 mean and unknown standard deviation. Here, the regression 

coefficient together locate the regression function are unknown. 



The calculation procedure of coefficients and testing are same I have discussed in 

developing simple regression equation in your previous classes. 

Now come to, Inference for multiple regression models: 

Actually, the inference for multiple regression models is analogous / similar to that for simple 

linear regression. The least squares estimates of the model parameters, their estimated 

standard errors, t statistics used to examine the significance of individual terms in the 

regression model, and an F statistic to check the overall significance are same like bivariate 

regression model. 

Standard error of the estimate: 

The standard error of the estimate  measures the amount the actual values (Y) differ from the 

estimated values ( Ŷ ). For relatively large samples, we would expect about 67% of the 

differences Y - Ŷ to be within sy.x’s  of 0 and about 95% of these differences to be within 

2sy.x’s  of 0. 

How you will calculate standard error of the estimate below: 
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Where, n represents number of observations, k represents number of independent variables in 

the regression model. 

SSE = 
2)ˆ( YY −  represents residual sum of squares 

MSE = SSE / (n - k - 1) represents residual mean square errors 

Now come to, Significance of the Multiple regression line: 

The analysis of variance (ANOVA) table based on the decomposition of the total variation in 

Y (SST) into its (SSR) and unexplained (SSE) parts is given in a table.  

ANOVA for multiple regression 

Source Sum of 

squares 

df (degrees of 

freedom) 

Mean square F ratio 

Due to regression SSR k MSR = SSR/k 

MSE

MSR
F =  

Due to error SSE n – k - 1 MSE = SSE/(n – k – 1) 

Total SST n - 1  

 

Then you have to apply F test for the significance of the regression as under: 

What is the null hypothesis here you have to formulate first as below: 

H0: β1 = β2 = …..= βk = 0, Ha: at least one βj ≠ 0 

So, 
MSE

MSR
F =  with df = k, n – k – 1. At significance level α (1% or 5% or 10%), the 

rejection region is F > Fα 



Where, Fα is the upper α percentage point of an F distribution with δ1 = k, δ2 = n - k - 1 

degrees of freedom. 

The coefficient of determination R is given as under: 
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It represents the proportion of variation in the response Y explained by the relationship of Y 

with the X variables. 

A value of R2 = 1 indicates that all the observed Y’s fall exactly on the fitted regression 

function. All of the variation in the response is explained by the regression. A value of R2 = 0 

says that YY =ˆ , that is, SSR = 0, and none of the variation in Y is explained by the 

regression. In practice, 0 ≤ R2 ≤ 1, and the value of R2 must be interpreted relative to the 

extremes, 0 and 1. 

The quantity R = 
2R  

Is called the multiple correlation coefficient and is the correlation between the responses Y 

and the fitted values Ŷ . Because the fitted values predict the responses, R is always positive 

so that 0 ≤ R ≤ 1. 

For multiple regression )
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 So, everything else equal, significant regressions (large F ratios) are associated with 

relatively large values for R2. 

The coefficient of determination can always be increased by adding an additional 

independent variable X to the regression function, even if this additional variable is not 

important. For this reason, some analysts prefer to interpret R2 adjusted for the number of 

terms in the regression function. The adjusted coefficient of determination, 2R , is given by 
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Like R2, 2R is a measure of the proportion of variability in the response Y explained by the 

regression. It can be shown that 0 ≤ 2R ≤ R2. When the number of observations n is large 

relative to the number of independent variables k, R2 ≈ 2R . If k = 0, YY =ˆ and 2R = R2. In 

many practical situations, there is not much difference between the magnitudes of 2R and R2. 

Misuse of R2 statistic: In spite of many usefulness of the R2 statistic, one must be cautious 

about its possible misuses. In particular, it is to be remembered that it is dangerous to play the 

game of maximizing the value of R2. Some researchers do this by gradually increasing the 

number of explanatory variables in the model. However, in empirical research, quite often we 

come across a situation where the value of R2 is high but very of the estimated coefficients 

are statistically significant and / or they have expected signs. Therefore, the researchers 

should be more concerned about the logical/theoretical relevance of the explanatory variables 



to the dependent variable and also their statistical significance. If in this process, a high value 

of R2 is obtained, well and good. On the other hand, if R2 is low, it does not mean that the 

model is necessarily bad, particularly when a good number of the estimated coefficients have 

expected signs and are statistically significant. 

Assumptions of Classical Linear Regression Model (CLRM) 

i. The regression model is linear in the parameters (can be nonlinear or linear in the 

dependent and independent variables). The regression model should correct variables without 

omitted variable bias and have correct functional form. 

ii. The regressors are assumed to be fixed or non-stochastic in repeated sampling. This 

assumption may not be appropriate for all economic data. If independent variable and error 

term are uncorrelated, the classical results hold true asymptotically (i.e. in large samples). 

iii. Given the values of the x (independent) variables, the expected, or mean, value of the 

error term is 0. E(ei / x) = 0. The conditional expectation of the error term, given the values of 

the independent variables, is zero. Since the error term represents the influence of other 

factors that are not included in the regression equation and may be essentially random, it is 

very logical to assume that their mean or average value is 0. 

iv. The variance of each ei, given the values of x, is constant, or homoscedastic. Var(ei / x) = 

σ2 

v. There is no correlation between two error terms meaning that absence of autocorrelation 

problem. Cov(ei, ej / x) = 0. If there is autocorrelation, an increase in the error term in one 

period affect the error term in the next. 

vi. There are no perfect linear relationships among the independent variables. This is the 

assumption of no perfect multicollinearity. 

vii. Error term is not correlated with the independent variables. E(ei / x1i, x2i,……xki) = 0. 

They are independently identically distributed (i.i.d.). 

vii. The regression model should be correctly specified. Alternatively, there is no 

specification bias or specification error in the model used in empirical analysis. It is 

implicitly assumed that the number of observations, N, is greater than the number of 

parameters (K) estimated. 

viii. All independent variables should be exogenous which are defined outside of the model. 

ix. Although it is not a part of the CLRM, it is assumed that the error term follows the normal 

distribution with 0 mean and constant variance. It is necessary for the hypothesis testing. 

Symbolically, ei ~ N(0, σ2). 

Statistical Properties of OLS 

i. Linearity: The estimators are linear, that is, they are linear functions of the dependent 

variable, yi. Linearity assumption can be expressed as follows: 

kikiiiiiii xxxxyE  ++++= ......)/( 33221  



Linear models can be expressed in a form that is linear in the parameters by a transformation 

of the variables. Nonlinear models on the other hand, cannot be transformed to the linear 

form. The non-linearity of interest here is the one which cannot be accommodated into linear 

conditional mean after transformation. 

Now the question how you will test linearity assumption? 

Reset-type test (Ramsey, 1969) is the most common test for testing the linearity assumption 

and this testing procedure involves the estimation of the following (auxiliary) regression by 

taking into consideration the errors: 
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Hypothesis testing: 

H0: ϑ = 0 

Ha: ϑ ≠ 0 

We can now test the statistical significance of ϑ by using t-test, F-test or LM test statistics.  

When linearity does not hold, the OLS estimators are biased and inconsistent or in other 

words, estimation and testing results are invalid or incorrect and you have to re-structured the 

estimated model again. 

ii. Un-biasedness: The estimators (
i̂ ) are unbiased, that is, in repeated applications of the 

method, on average, the estimators approach their true values. 

iiE  =)ˆ(  

iii. Efficiency: In the class of linear estimators, OLS estimators have minimum variance. As a 

result, the true parameter values can be estimated with least possible uncertainty; an unbiased 

estimator with the least variance is called an efficient estimator. 

iv. Normality: The assumption of normality can be expressed as follows: 

ei ~ N(0, σ2), or (yi / xi) ~ N(βx1, σ2) 

If the assumption of normality does not hold, then the OLS estimator ( ̂ ) remains the Best 

Linear Unbiased Estimator (BLUE), i.e. it has the minimum variance among all linear 

unbiased estimators. However, without normality one cannot use the standard for the t and F 

distributions to perform statistical tests. 

The following null hypothesis should be specified before normality test.  

The null hypothesis is that the skewness (a measure for the degree of symmetry in the 

variable distribution) and kurtosis (a measure for the degree of peakedness / flatness in the 

variable distribution) coefficients of the conditional distribution of yi (or, equivalently, of the 

distribution of ei) are 0 and 3, respectively. 

H0: Skewness = 0, (if skewness < 0 then f(yi/xi) is skewed to the left side 

H0: kurtosis = 0, (if kurtosis > 3 then f(yi/xi is leptokurtic) 



Now, the above assumptions can be tested jointly by using the Jarque-Bera test (JB, 1981) 

which follows asymptotically a chi-square distribution and it is a popular test for normality 

as under: 

What is the hypothesis for this test? 

H0: Distribution is normal 

Ha: Distribution is not normal 
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Where, n is the number of observation, S is the skewness and K is the kurtosis. In general, 

when the values of S and K are 0 and 3 respectively then it may be said that the distribution is 

normal. 

Decision rule: If the probability value of the computed J-B statistics is less than the chosen 

significance level (1% or 5% or 10%) then reject H0 (not normal) and vice-versa. 

For example, J-B statistic = 232.3196 and Probability = 0.00000 it indicates that the 

probability value is less than 1% or 5% or 10% level so reject null hypothesis meaning that 

not normal. 

Another case, J-B statistic = 2.3196 and Probability = 0.123546 (0.123546 * 100 = 12.35% 

approx) it indicates that the probability value (12.35%) is higher than 1% or 5% or 10% level 

so accept null hypothesis meaning that normally distributed. 

Heteroscedasticity Problem 

The variance of the error term is constant (homoscedasticity) over the sample period. If the 

error term doesn’t have constant variance, they are said to be heteroscedasticy. So, errors may 

increase as the value of an independent variable increases.  

For example, annual family expenditures for education differ among rich and poor. A 

research may include two income group of families may face heteroscedasticity problem. 

Measurement error can be also occurred if some of respondent gives more accurate 

responses. 

Why this problem occurs? 

i. There are sub-population differences or other interaction effects. For instance, the effect of 

education in employment differs for villagers and urban parts. 

ii. There are model mis-specifications. For instance, instead of using y, using log of y or 

instead of using x, using x2. 

iii. There are omitted variables. Omitting the important variables from the model may cause 

bias. In the correctly specified model, the patterns of heteroscedasticity are expected 

disappear. 

How we will detect heteroscedasticity? 



There are many ways to detect such problem. 

1. Graphical representation: Plotting the residuals against fitted values or plot the 

independent variables suspected to be correlated with the variance of the error term. 

2. White Test (1980): It is a special case of Breusch-Pagan test. It involves an auxiliary 

regression of squared residuals, but excludes any higher order terms. It is very general. If the 

number of the observation is small, power of the White test becomes weak. It can be 

performed by obtaining least squares residuals and modeling the square residuals as a 

multiple regression which includes independent variables and their squares and second 

degree products (interaction term) as under: 

iiiiiiii xxxxxxe  ++++++= )()()( 215

2

24

2

1322110

2
 

White test for heteroscedasticity is performed through the null hypothesis of no 

heteroscedasticity as under: 

H0: λ1 = λ2 = λ3 = λ4 = λ5 = 0 

Ha: λ1 = λ2 = λ3 = λ4 = λ5 ≠ 0 

Decision rule: If the computed value of probability of the chi-square distribution for 

observed R2 is higher than the chosen significance level say 1% or 5% then accept null 

hypothesis meaning that absence of heteroskedasticity or vice-versa. 

3. Breusch-Pagan Test (1980): It is a Lagrange multiplier test for heteroscedasticity and 

designed to detect any linear form of heteroscedasticity and the test hypothesis is similar to 

White test. 

4. Ramsey’s Test (1969): RESET stands for regression specification error test. It is a general 

test for the following types of specification errors: 

a. Omitted variables bias (if set of independent variables do not include all relevant variables) 

b. Selection of wrong functional form  

c. Correlation between independent variable and error term 

d. The existence of lagged dependent variable values 

e. Serially correlated error terms 

Ramsey says that any or all of these specification errors above produce a non-zero mean 

vector. 

Hypothesis: 

H0: e ~ N(0, σ2 I) 

Ha: e ~ N(0, σ2 I) μ ≠ 0 

The test is based on following augmented regression equation: 

y = βx + λZ + e 



The main question in constructing the RESET test is to identify the variables which should be 

in the Z matrix. The Z matrix can include the variables which are not in the original 

specification, so that the test of λ = 0 is called as the omitted variables test. 

5. ARCH Test (Engel, 1982): It is common for financial variables. He detects that large and 

small forecast errors tend to occur in clusters so that the conditional variance of error term is 

the autoregressive function of the past errors. Ignoring ARCH effect can result inefficiency of 

the estimation. ARCH(q) effect can be written as under: 
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This is a test for ARCH(q) vs ARCH(0). 

6. Goldfeld-Quant (GQ) Test (1965): The GQ test can be used when it is assumed that the 

variance of the error term increases consistently or decreases consistently as x increases. This 

test is commonly used because it is easy to apply when one of the regressors is considered to 

possess proportionality factor of heteroscedasticity. The test has two limits: its difficult to 

reject the null hypothesis of homoscedasticity and the fact that it do not allow to verify other 

forms of heteroscedasticity. 

Decision rule: If the computed value of the F statistics is greater than the critical or table 

value at the chosen significance level, the null hypothesis of homoscedasticity is rejected or 

vice-versa. 

7. Part Test: This test procedure involves three steps: 

a. Modeling OLS estimation to derive the OLS residuals. 

b. The derivation of the ln(e2
i) which are considered as dependent variable in the regression 

and looks like ln(e2
i) = α0 + α1lnzi + μi 

c. The estimation results of the model are used to verify the presence of heteroscedasticity. 

8. Glesjer LM test (1969): This test is similar to the Breusch-Pagan-Godfrey test. This test 

tests against an alternative hypothesis of heteroscedasticity. The auxiliary regression that 

Glejser proposes regresses the absolute value of the residuals from the original equation. As 

with the previous tests, this statistic is distributed from a chi-square distribution with 

degrees of freedom equal to the number of variables. 

9. Harvey-Godfrey LM Tets (1976): This test is also similar to the Breusch-Pagan-Godfrey 

test. He tests a null hypothesis of no heteroscedasticity against heteroscedasticity of the form 

of )exp( '2  tt z=  where, again zt is a vector of independent variables. 

Now the question is which test you should apply among the various tests? 

Really, it is a very difficult task for the researchers. So, to choose the wrong test may not 

detect presence of heteroscedasticity. The most popular test to check heteroscedasticity is 

the White Test and this test is largely used by the researchers. Although, it has limited power 

against large number of alternatives. Alternatively, visual inspections/ graphical 

presentation of residuals I have already stated t the beginning can be the best method to 

detect heteroscedasticity correctly.  



What are the ways to correct Heteroscedasticity problem? 

i. A common way to alleviate this problem is to use logarithms of all variables rather than 

their level forms. So, our first step in handling the heteroscedasticity problem is to consider a 

log linear model. 

2. Sometimes heteroscedasticity results from improper model specification. There may be sub 

group differences. Effects of variables may not be linear. Perhaps some important variables 

have been left out of the model. If these represent a problem then deal with them first. 

3. Using Weighted Least squares (WLS) is more difficult option but superior when you can 

make it work right. Generalized least squares (GLS) is a technique that will always yield 

estimators that are BLUE (Best Linear Unbiased Estimators) when either heteroscedasticity 

or serial correlation is present. 

Autocorrelation 

Autocorrelation can only occur in the models that include time series data and it means that 

either the model is specified with an insufficient number of lagged variables or not all the 

relevant explanatory variables are specified in the model. 

Here, the error term catch the influence of the not included variables affecting dependent 

variable. Persistence effect of the excluded variables causes positive autocorrelation. If those 

excluded variables are observable and includable in the model, autocorrelation test result is 

an indication of a mis-specification model. So it is also called mis-specification test. Incorrect 

functional forms, omitted variables and an inadequate dynamic specification of the model can 

cause autocorrelation. 

What are the consequences of Autocorrelation in the residuals? 

i. The standard errors are underestimated, so t-values are overestimated. 

ii. High values for the t-statistics and R2 are observed in the estimation output. It means that 

the result is false if the output is not correctly interpreted.  

iii. OLS estimates remain unbiased, but it becomes inefficient. 

How you will detect autocorrelation? 

There are various tests of autocorrelation for detection. All the tests have same null 

hypothesis of absence of autocorrelation in the disturbance term. 

H0: Absence of autocorrelation in the disturbance term 

Ha: Presence of autocorrelation 

The existence of autocorrelation may be an indication of mis-specification. A possible way to 

eliminate autocorrelation problem is to change model specification. 

How autocorrelation problem can be detected? 

There are so many ways to detect autocorrelation problem. 

1. Graphical method: Just plotting the error term in graph to detect autocorrelation. 



2. Breusch-Godfrey LM Test (1978): The idea behind this test is as follows: 

First you have to estimate the linear model with OLS. 

Yt = α1 + β1Xt + β2Zt + μt 

Next, residuals are computed and following regression equation is estimated again with OLS 

as under: 
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What is the null hypothesis here, H0: 0....21 ==== p  (No autocorrelation) 

Actually, the BG test is called serial correlation LM test.  

Decision rule: If the computed probability value of the LM statistic is higher than 1% or 5% 

level then accept null hypothesis meaning that there is no autocorrelation problem in the 

disturbance or vice-versa. 

3. Box-Pierce & Ljung-Box Tets (Q test, 1970): These two tests have asymptotic χ2 (chi-

square) distribution, with p degrees of freedom under the null hypothesis of no 

autocorrelation. This test uses autocorrelation of the residuals. The estimated autocorrelation 

coefficients are defines as i


. 

It can be computed as under: 
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The theoretical autocorrelation coefficients  i


 are  0 under the null hypothesis. The Q-test 

does not look at the individual autocorrelation coefficients. It considers the sum of a number 

of squared autocorrelation coefficients as follows: 
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But this test has low power of detecting autocorrelation. The main difference between Q-test 

and BG test is that one specific order of the autoregressive process specified should be 

chosen under the alternative hypothesis. 

4. Durbin Whatson test (1950): This is the widely used autocorrelation test. This test is 

used for first order autocorrelation. DW test assumes that error term is stationary and 

normally distributed with zero mean. It tests the null hypothesis H0 that the errors are 

uncorrelated. 

H0: Absence of autocorrelation 
Ha: Presence of autocorrelation 

This test can be used if the explanatory variables are exogenous and a constant term has been 

included in the model. DW-statistics is not used, if lagged dependent variables are present as 

explanatory variables in the model. It can be employed if the explanatory variables are 



exogenous and the model includes intercept.  DW-statistics should be used if all the 

conditions are satisfied. Otherwise it is more informative to use Breusch-Godfrey test in 

your research paper. 
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What are the Properties of the DW-statistic? 

i. φ1 = 0, DW ≈ 2 (No residual autocorrelation) 

ii. φ1 > 0, DW < 2 (Positive autocorrelation) 

iii. φ1 < 0, DW > 2 (Negative residual autocorrelation) 

Here, one important thing is that DW-statistic cannot be tabulated. But it is possible to derive 

distributions of a lower (dL) and an upper (dU) bound. These two distributions depend on the 

number of the observations (n) and the number of the explanatory variables (K). Therefore, 

DW-statistic is tabulated as follows: 

If DW ≥ dU: don’t reject H0. 

If dL < DW < dU: the test is inconclusive 

If DW ≤ dL: reject H0 for the favor of first order residual autocorrelation 

If there is autocorrelation, then OLS is no longer BLUE, and then EGLS ( Estimated 

Generalized Least Squares)or FGLS (Feasible Generalized Least Squares) proposed by 

Cochrane-Orcutt can be used. 

But DW test for autocorrelation has some limitations such as (i) The form of model 

(explanatory variables) should be known and (ii) The test result is sometimes inconclusive. 

Now what are the ways to correct autocorrelation problem in your time series research? 

Actually, the autocorrelation is an indicator of model mis-specification. If the model suffers 

from mis-specification then change the model not the estimation method (from OLS to 

EGLS or FGLS). There are three types of model mis-specification such as: 

1. Omitted variable bias. So excluding relevant independent variables can cause 

autocorrelation. Find out the relevant omitted variable and include in the model. 

2. Functional form; to use log transformation can eliminate autocorrelation problem. 

3. Dynamic mis-specification; whether the model is static or dynamic should be decided. 

Inclusion of the lagged endogenous and exogenous variables eliminates the autocorrelation 

problem. 

 

 



MULTICOLINEARITY 

It is a data problem. Collinearity between variable is always present. It becomes a problem 

and violation of the classical assumptions if the correlations among the independent variables 

are very strong. It can affect accuracy of the parameter estimates. Multicollinearity 

misleadingly increases the standard errors. Thus, it makes some variables statistically 

insignificant while they should be otherwise significant. It is like two or more people singing 

loudly at the same time. One cannot discern/separate/discriminate who are singing how. 

The influence of the independencies offset/compensate each other. In multicollinearity, the 

parameter estimates become inaccurate. 

If someone uses too many dummy variables in the estimated model that cause’s 

multicollinearity problem. 

What are the causes of multicollineairty? 

1. Improper use of dummy variables in the model. 

2. Including a variable computed from other variables in the equation (e.g. family income = 

husband’s income + wife’s income, and the regression includes all three income measures) 

3. Including the same or almost the same variable twice (height in feet and height in inches; 

or, more commonly, two different operationalization of the same identical concept) 

How the researcher detect multicollinearity problem? 

1. Variance Inflation Factor (VIF) is used to measure how much the variance of the 

estimated coefficients is increased over the case of no correlation among the independent 

variables. 

• If VIF = 0, No multicollinearity 

• If VIF ≥ 0, there is multicollineairity 

2. Tolerance (TOL): It is the reciprocal of VIF. If the TOL value is closer to 0, the greater is 

the degree of collinearity of one independent variable with the others independent variables. 

If the value of TOL is closer to 1, the greater the evidence of no collineairity among the 

independent variable. But the rule of thumb is that TOL value of 0.10 or less indicates 

presence of severe multicollinearity. 

3. Correlation Matrix: Here, you just calculate simple correlation coefficient between the 

independent variables and then determine the significance of the computed correlation 

coefficients so as to conclude about the presence of multicollineairity. But rule of thumb is 

that if the correlation coefficients between the independent variables are less than 0.90 then 

absence of multicollenearity. 



4. Condition Number (CN): The condition number provides an overall measure of 

multicollinearity. It conveys the status or condition of the data matrix X where data on 

explanatory variables are put in. 

The rules of thumb: 

i. if CN = 1, no multicollineairity. So closer the value of CN to unity, the better is the 

condition of the data matrix X. 

ii. When 1 < CN < 10, multicollinearity is negligible 

iii. 10 ≤ CN ≤ 30 represents the situation of moderate to strong multicollinearity 

iv. if CN > 30, there is severe multicollinearity. 

5. The researchers sometimes apply other techniques such as Principal component method, 

ridge regression etc., to solve the problem of multicollinearity. Under, PCM method, the 

colliner variables are grouped to form a composite index capable of representing this group of 

variables by itself. The ridge regression method follows an entirely different approach to the 

problem of multicollinearity. In ridge regression, a constant is added to the variance of each 

explanatory variable.  

Which measure should we use to check multicollineairy? 

It is very difficult to say that which measure is superior as compare to others. But, most of the 

empirical studies based on time series data have used correlation matrix or VIF as a standard 

measure. So the researchers are advised to use VIF or Correlation matrix or both to check 

this problem for their research. 

What are the remedial measures to eliminate such problem? 

1. Increasing sample size helps to reduce some but not all problems associated with 

mulicollinearity. Larger sample size will always improve the precision or reliability of the 

OLS estimates. Hence, attempts should be taken to work with larger sample. 

2. It has been found that the intensity of multicollinearity gets reduced when transformed 

variables (ratio, first difference etc) are used instead of variables in level form. 

3. If an extraneous estimate of the coefficient of one of the variables responsible for creating 

multicollinearity is available, it can be used and a mixed estimation method followed to 

correct the high-variance problem created by the multicollinearity.  However, while applying 

this method, extra care must be taken to ensure that the extraneous estimate is relevant. 

4. A popular method of avoiding this problem is by simply dropping one or more of the 

collinear variables. Usually, this method becomes effective when a large number of 

explanatory variables have been included in the model of which all are not important. 



STATIONARITY/UNIT ROOT PROBLEM 

The time series variables included in regression models need to be stationary because if their 

means and variances are changing, the computed t-statistics under the OLS regression fail to 

converge to their true value as sample size increases. Although the variables have strong 

association between them although in reality there might not be any such association between 

the variables. This is known as the problem of Spurious regression. 

Now start with the stationary stochastic process, a stochastic process (time series) Yt is said to 

be stationary if its mean and variance are constant and independent of time and the 

covariances depend only upon the disturbance between two time periods, but not on time 

periods per se. So, Yt is stationary when the following conditions hold: 

i. E(Yt) = μ = constant for all t 

ii. Var(Yt) = σ2 = Constant for all t 

iii. Cov(Yt, Yt-s) = λs = Constant for all t ≠ s 

These conditions imply that the mean and variance of the stationary series remain constant 

over time. For example, if we consider monthly observations from 2010 to 2020 then the 

above conditions remain same during this period.  

How to check Stationarity problem in your data set? 

There are many ways: 

1. Graphical Approach: In general, stationarity of a series can be understood simply by 

plotting the series over time. If the series shows no tendency to drift upwards over time, it is 

stationary in mean. Otherwise, it is non-stationary. 

2. Autocorrelation function (ACF) and Correlogram: The stationarity of a given time series 

may be assessed by computing the value of its autocorrelation function (ρ). For the series Yt, 

the value of ρ at lag k, denoted by ρk, is computed as under:  
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Here, we may compute the value of ρk for different lag lengths (k). A graphical plot of ρk 

against k is called correlogram. The correlogram helps to understand whether the series is 

stationary or not. If the value of ρk at various hovers/stay close around 0, we say that the 

series is stationary. For a non-stationary series, the value of ρk at various lags are non-zero, 

although they may slowly decline towards 0 as the lag length increases. 

3. Bartlett Test: Here, it is shown that if the series is purely random, ρk follows a normal 

distribution with mean 0 and variance 1/T where T indicates number of observations in the 

series. Then 95% confidence interval for ρk is given by 
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Decision rule: When ρk falls outside this interval, we reject the null hypothesis that ρk = 0 

and conclude that Yt series is non-stationary. On the other hand, if ρk falls within this 

interval, we accept the null hypothesis that means Yt series is stationary. 

4. Box-Pierce Test: This test is applied to examine the validity of the null hypothesis that all 

ρk’s are simultaneously/at same time/concurrently 0. The Box-Pierce Q-statistic may be 

computed as under: 
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Where, T means number of observations and m means maximum lag length. 

Here, Q statistic follows chi-square distribution with m degrees of freedom. So when 

computed *

BPQ = χ2* > 2 at the chosen significance level and given degrees of freedom, reject 

null hypothesis that all ρk are simultaneously 0, and conclude series is non-stationary. 

5. Ljung-Box Test: Actually, this test is a modified version of the Box-Pierce test. The 

modified Ljung-Box Q-statistic is computed as under: 
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Here, *

LBQ also follows Chi-square distribution with m degrees of freedom and the decision 

rule is same as Box-Pierce test. 

6. Unit Root test: A more formal test of stationarity that has become widely popular is the 

unit root test. To understand this test you have to consider first an autoregressive (AR) 

function/model: 

Yt = ρYt-1 + μt 

Where μt is the white noise error term such that 

E(μt)= 0 for all t 

E(μt
2) = σ2 for all t 

E(μt μs) = 0 but t ≠ s 

We know that when ρ = 1, we face a non-stationary situation and conclude that Yt has a unit 

root. This also implies that Yt represents a random walk series. Therefore, one way to test if 

Yt is non-stationary is to regress it on its one period lagged value, i.e., Yt-1, and find out if ̂

is statistically significantly equal to 1. If it is so, we conclude that Yt is non-stationary. 

Alternatively, we may rewrite the above equation as under: 



t1-tt11 YYor  )1(  +=+−=− −− tttt YYY  

Where, δ = (ρ - 1) 

In this situation we cannot apply conventional t-test here for the validity of the null 

hypothesis (H0): δ = 0. If δ = 0, then ρ = 1, which means that Yt has a unit root and it is non-

stationary. 

To solve this problem we can apply Dickey-Fuller (DF) or Augmented Dickey-Fuller (ADF) 

test. 

7. Dickey-Fuller test (1979): In practice D-F test is applied in three forms: 

ttt YY  += −1  --- (when the time series has stochastic trend but no drift) 

ttt YY  ++= −1 ----- (when time series has both stochastic trend and drift, this model fits 

into the financial time series such as interest rates and exchange rates) 

tttt YY  +++= −1 ----- (when the series has everything like drift, deterministic trend 

and stochastic trend and this model fits into trending time series like asset prices or the levels 

of macroeconomic aggregates like real GDP etc.) 

Where, α is a constant (drift) and t is a time trend. For these entire models the null hypothesis 

is: 

H0: δ = 0 (Presence of unit-root or non-stationary) 

8. Augmented Dickey-Fuller (ADF) test: The ADF test is same as D-F test, except the D-F 

regression equations are augmented by including m lags of the dependent variable (∆Yt) to 

correct serial correlation problem in the disturbance term. Here, the null hypothesis (H0) is 

same like D-F test. Here also three models are considered as before: 
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Now the question here is that which model we should consider. According to Doldado, 

Jenkinson and Sosvilla-Rivero they suggest that start with the last estimation model where 

everything is included. But my suggestion is that if your time series data don’t follow 

deterministic trend then you should start with the second model where drift and stochastic 

trend is included. 



Now what is our decision criteria: If the absolute test statistic (ADF test statistic follows t 

distribution) is more than the critical value (absolute) then we reject the null hypothesis and 

accept alternative hypothesis. 

H0: Time series has unit root or non-stationary 

Ha: Time series has no unit root or stationary 

For example: Computed test statistics = 2.0671 and critical value at 5% level is 3.020686 

Here, test statistic is less than the critical value (2.0671 < 3.020686), so we cannot reject 

null hypothesis meaning that time Yt has unit root or non-stationary. 

Or 

You can check it by using the probability value. If the computed probability value 

corresponding to the test statistics is higher than the chosen significance level say 5% 

then reject H0 and vice-versa. 

9. Phillips-Perron (1988) test (P-P): The D-F/ADF tests are based on the assumptions that 

the error term is serially independent and has a constant variance. Thus, while using these 

tests, we have to ensure that these assumptions are valid. Phillips & Perron develop a 

generalization of the ADF test procedure that allows for less restrictive assumptions 

concerning the distribution of error terms. The test regression here is also the AR(1) process: 

ttt YY  += −1  

While the ADF test corrects for presence of serial correlation by adding lagged differenced 

terms on the right hand side of the above model, the P-P test makes a correction to the 

computed τ-statistic of the estimated coefficient of δ to account for serial correlation in μt. so 

the P-P τ-statistic is just a modification of the ADF τ-statistic that makes into account the less 

restrictive nature of the error process. 

Decision rule: The decision rule is same like D-F/ADF test.  

 
Types of Models 

1. Visual Models: It involves graphical representation of different economic issues. It 

consists of graphs with lines and curves which provides information and ideas in brief about 

an issue of interest. For example, Supply and demand model. 

2. Mathematical Model: These are systems of simultaneous equations with an equal or 

greater number of economic variables. They consist of more complex variables and 

relationships. For example, to examine the demand elasticity for luxury cars in low 

income countries. 



3. Empirical Model: Empirical models are one type of mathematical models designed to be 

used along with data. Example, to investigate the changes in income when investment 

changes one percent. 

4. Static model: These models provide information about what happens over time. The 

model estimate generally starts with predefined equilibrium condition, and then a shock to 

the model is given. At the end, the new equilibrium is obtained without and exposition of 

what happened in the transition from first equilibrium to the second. To investigate the 

impact of class size on the average test score of the students. 

5. Dynamic model: Dynamic models directly incorporate time into the model. This is usually 

done in economic modeling by using differential equations. To examine the role of interest 

rate of inflation rate movements over time. 

6. Econometric models: This model should be structured based on economic theory, 

experience or critical thinking.  It aims to explore relationship between economic variables 

and interpret the results obtained through statistical techniques. 

7. Structural Equation Modeling (SEM): SEMs are the equations specific for the economic 

theory. There are different types of structural equations such as: 

i. Behavioral equation, consumption equation Y = C +I + X – M 

ii. Technical relationships, production function Q = f(L, K) 

iii. Identifies, Keynesian macro model Ct = β1 + β2Yt;    Yt = Ct + It   

8. Stochastic models: Stochastic modeling is a technique of predicting outcomes and takes 

into account a certain degree of randomness, or unpredictability. Economic relationship is not 

an exact relationship; a disturbance or error term should be added to measure the impact of 

other variables which are not included in the model. 

9. Deterministic models: Deterministic model is a mathematical model in which outcomes 

are determined through known relationships among variables and events without variation. In 

deterministic models, given input always produces the same output, such as in a known 

chemical reaction. In comparison, stochastic models use ranges of values for variables in the 

form of probability distributions. 

 

CHOOSING A FUNCTIONAL FORM 

Before running any regression equation for research first of all specify the CLRM, a specific 

functional form should be chosen. Any functional form that is linear in parameters can be 

chosen. If incorrect functional is chosen, then the model is mis-specified. If the model is mis-



specified then it may not be a reasonable approximation of the true data generation process. 

We make a functional form specification error when we choose the wrong functional form. 

Constant term: This term should be included in the regression model unless is some strong 

reason for opposite such as the data is in the close neighborhood. Not including a constant 

term causes inflated/overstated t-ratio. 

Functional forms: 

i. The log-log Regression model (Double log): 

lnyi = α0 + β1lnx1i + β2lnx2i + …………….. + βkxki + ei 

Consider the following exponential regression model: 
ei

ii axy 1=  

It can be expressed in logs: lnyi = α0 + β1lnxi + ei 

It is called linear in logs and can be estimated by OLS on the condition that classical 

assumptions are satisfied. 

ii. Cobb-Douglas production function: 

KLQKLQ loglogloglog 210
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When L changes 1%, Q changes by β1% 

iii. Lin-Log model (semi log): iii exy +++= ......ln 110   

When x1 changes 1%, y changes 0.01 * β1, holding other variables constant. The impact of a 

variation in xi on y decreases as xi gets larger. 

iv. Log-in Model: iii exy +++= ......lnln 110   

When x1 changes one unit Yi changes 100 * β1% holding the other regressors constant. The 

impact of a variation in xi on yi increases with yi. 

v. Quadratic form: n1,....,i        ,23
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Cost curve is U-shaped and cost is quadratic in output with β1< 0 and β2 > 0. 

yi increase with x1i but decrease with 
2
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vi. Inverse form: ii
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The slope approaches to zero when x1i is large. 

vii. Slope dummy independent variable: 

iiiiii eDxDxy ++++= 3210   

There are two equations as follows: 
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0 if            ,10 =++ iii Dex  

Here, each equation should be estimated separately. Interaction term should be included if 

there is reason to believe that the slopes are different across categories. 

viii. Lags: ittt exyy +++= − 2110   

The length of time between cause and effect is called a lag. yt-1 is lagged independent 

variable. β1 measure the impact of previous observation on the current observation. If lag 

structure take place over more than one time period, it is called distributed lags. 

ix. Mixed functional forms: It is possible to form mix functional forms as follows: 

iiiii ezxy ++++= 2

3210 ln   

In this case yi are a semi-log function of xi, a quadratic function of φi, and a linear function of 

zi. The marginal effect and elasticity for each of these variables is given by the formulas 

above. 

 

SUGGESTED RESEARCH TOPIC FOR THE SCHOLARS 

A. Saving, Investment and Economic Growth: 

i. An analysis of the interaction among savings, investments and growth in India. 

ii. Are saving and investment co-integrated: Evidence from India? 

iii. Does saving really matter for growth: Evidence from any country? 

iv. Do foreign direct investment and gross domestic investment promote economic growth? 

v. Impact of COVID-19 on economic growth in India? 

B. Trade and Economic Development: 

i. How trade and foreign investment affect the growth: A case of India 

ii. Trade, FDI and economic growth in India 

iii. An empirical investigation of the causal relationship between openness and economic 

growth in India. 

iv. Foreign trade and economic development in India: a Granger causality analysis 

v. Is the import-led hypothesis valid for India: An empirical analysis. 

vi. The dynamic relationship between the GDP, imports and domestic production of crude 

oil: Evidence from india 

C. Stock market and economic development: 

i. Financial development and the FDI growth nexus: The Indian evidence 

ii. Macroeconomic environment and stock market: The Indian case 

iii. Modeling the linkage between the US and Indian stock market 



iv. The long-run relationship between stock returns and inflation in India 

v. Testing market efficiency hypothesis: The Indian stock market 

D. Economics and social issue 

i. linkages between Food production and Indian poverty 

ii. Relationship between Economic growth and Indian competitiveness 

iii. Causal Relationship between unemployment and economic development 

iv. International tourism and economic development in India: Causality analysis 

v. Financial recession and economic sustainability: Indian evidence 

vi. Causal relationship between Terrorism attack and social impact: Evidence from India 

vi. Modeling the linkage between terrorism attack and human peace: Evidence from India 

 

 

Stay at home and maintain social distancing and strictly follow 

Government rules and regulations during this crisis period. 

Thank you very much and good luck 

Contact with me if you face any problem (9432653985) 

 


