
Mining Frequent patterns,
Associations & Correlations

[Part-2]

Shubham kumar

Dept. of CS&IT

MGCU Bihar

• Apriori algorithm:

Apriori Algorithm

Input: D, a database of transactions.

min_sup, the minimum support count threshold

Output: L, frequent itemsets in D.

Steps:

[1] L1 = frequent_1-itemsets(D);

[2] For (k = 2; Lk-1 ≠ φ; k++)

[3] Ck = apriori_gen(Lk-1);

[4] For each transaction t ϵ D

[5] Increment the count of all candidates in Ck that contain in t.

[6] Lk = candidates in Ck with min_sup.

[7] End

[8] Return L = ∪K Lk

apriori_gen(Lk-1 : frequent (k-1) itemsets)

[1] For each itemset l1 ϵ Lk-1

[2] For each itemset l2 ϵ Lk-1

[3] IF (l1[1] = l2[1] ^ l1[2]= l2[2] ^………..^ l1[k-2]= l2[k-2] ^ l1[k-1] < l2[k-1])

[4] THEN {

[5] c = l1 ⋈ l2 // Join step

[6] For each (k-1)-subset s of c

[7] IF s ∉ Lk-1

[8] THEN delete c // Prune step

[9] ELSE add c to Ck

[10] End

[11] }

[12] Return Ck

Generating Association rules
• By using Apriori algorithm we are able to find frequent itmsets from

transactional database. (In our example, we got frequent itemsets from
database D).

• Now we can generate strong association rules from those frequent
itemsets.

• Strong association rules satisfy both minimum support (min_sup) and
minimum confidence (min_conf).

• Since frequent itmsets already satisfy the minimum support, therefore we
have to focus only on minimum confidence.

As we know, Confidence(A ⟹ B) = P(B/A) = support count (A⋃B)

support count (A)

• The P(B/A) is the conditional probability that is expressed in terms of
itemset support count, where support count(A ∪B) is the number of
transactions containing the itemsets A∪B (i.e. items in A and items in B),
and support count(A) is the number of transactions containing the itemset
A.

• Based on the above equation, association rules can be generated as follows:

[1] Generate all nonempty subsets of each frequent itemset l.

[2] For every nonempty subset s of l, output the rule

s ⇒ (l − s) , IF

where min_conf is the minimum confidence threshold.

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑐𝑜𝑢𝑛𝑡 𝑙

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑐𝑜𝑢𝑛𝑡 𝑠
≥ min_𝑐𝑜𝑛𝑓

• In our example, database D has different transactions which contain different
itemsets as shown in figure. what are the association rules that can be
generated from X?

D

By using apriori algorithm,

we found frequent itemset X = {I1, I2, I5}.

The nonempty subsets of X are {I1, I2}, {I1, I5}, {I2, I5}, {I1}, {I2}, and {I5}.

hence, the resulting association rules will be :

{I1, I2} ⇒ I5, confidence = 2/4 = 50%

{I1, I5} ⇒ I2, confidence = 2/2 = 100%

{I2, I5} ⇒ I1, confidence = 2/2 = 100%

I1 ⇒ {I2, I5}, confidence = 2/6 = 33%

I2 ⇒ {I1, I5}, confidence = 2/7 = 29%

I5 ⇒ {I1, I2}, confidence = 2/2 = 100%

• If the minimum confidence threshold is, say, 50%, then only the first, second,
third, and last rules are output, because these are the only ones generated
that are strong.

i.e. {I1, I2} ⇒ I5,

{I1, I5} ⇒ I2,

{I2, I5} ⇒ I1,

and I5 ⇒ {I1, I2} are strong rules.

• We have realized that the strong rules can be generated easily after fidning
frequent itemsets.

• Hence by using the following flowchart strong rules can be generated from
the transactional database.

• Improving the Efficiency of Apriori:

There are many approaches used to improve the efficiency of the Apriori
algorithm.

Hash-based technique (hashing itemsets into corresponding buckets): A hash-
based technique can be used to reduce the size of the candidate k-itemsets, Ck ,
for k > 1.

For example, when scanning each transaction in the database to generate the
frequent 1-itemsets, L1, we can generate all the 2-itemsets for each transaction,
map them into the different buckets of a hash table structure, and increase the
corresponding bucket counts.

In the hash table , a 2-itemset with a corresponding bucket count less than the
support threshold cannot be frequent and thus should be removed from the
candidate set. Such a hash-based technique may substantially reduce the
number of candidate k-itemsets (especially when k = 2).

• Create hash table H2 using hash function:

h(x,y)= ((order of x)*10 + (order of y)) mod 7

H2

Hash table H2 for candidate 2-itemsets

This hash table is generated by scanning the database D while determining L1 .

If the minimum support count is, say 3, then the itemsets in buckets 0,1,3 and 4
cannot be frequent so they should not be included in C2 .

Bucket address 0 1 2 3 4 5 6

Bucket counts 2 2 4 2 2 4 4

Bucket contents {I1,I4}

{I3,I5}

{I1,I5}

{I1,I5}

{I2,I3}

{I2,I3}

{I2,I3}

{I2,I3}

{I2,I4}

{I2,I4}

{I2,I5}

{I2,I5}

{I1,I2}

{I1,I2}

{I1,I2}

{I1,I2}

{I1,I3}

{I1,I3}

{I1,I3}

{I1,I3}

• Transaction reduction (reducing the number of transactions scanned in
future iterations): A transaction that does not contain any frequent k-itemsets
cannot contain any frequent (k + 1)-itemsets. Therefore, such a transaction
can be removed from further consideration because subsequent database
scans for j-itemsets, where j > k, will not need to consider such a transaction.

• Partitioning (partitioning the data to find candidate itemsets): A partitioning
technique can be used that requires just two database scans to mine the
frequent itemsets. Phase 1 phase 2

Transactions
in D

Divide D
into n

partitions

Find global
frequent
itemsets
among

candidates
(1-scan)

Combined
all local

frequent
itemsets to

form
candidate

itemset

Find the
frequent
itemsets

local to each
partition
(1-scan)

Frequent
itemsets

in D

• It consists of two phases. In the first phase, the transactions of D are divided
into n non overlapping partitions.

• If the minimum relative support threshold for transactions in D is min_sup,
then the minimum support count for a partition is min_sup multiplied by
the number of transactions in that partition.

• For each partition, all the local frequent itemsets (i.e., the itemsets frequent
within the partition) are found.

• A local frequent itemset may or may not be frequent with respect to the
entire database, D.

• However, any itemset that is potentially frequent with respect to D must
occur as a frequent itemset in at least one of the partitions.

• Therefore, all local frequent itemsets are candidate itemsets with respect to
D. The collection of frequent itemsets from all partitions forms the global
candidate itemsets with respect to D.

• In the second phase, a second scan of D is conducted in which the actual
support of each candidate is assessed to determine the global frequent
itemsets.

• Partition size and the number of partitions are set so that each partition can
fit into main memory and therefore be read only once in each phase.

Sampling and Dynamic itemset counting are other approaches to improve the
efficiency of apriori algorithm.

Reference

• Jiawei Han, Micheline kamber and Jian pei. “DATA MINING concepts and
Techniques” 3/e, Elsevier, 2012

