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Now we will discuss here Transverse Magnetic (TM) mode. In this case of the

TM mode, the magnetic field has its components transverse to the direction of

wave propagation. This suggests that if we put Hz = 0 and resolve Ex, Ey, Ez,

Hx, and Hy by utilizing eqs. (14) and (24-27 from (previous lecture II) ) and the

boundary conditions. We shall solve for Ez and afterward resolve next field

components from Ez. At the walls (perfect conductors) of the waveguide in

Figure 1, the tangential components of the Electric filed E must be continuous;

that is
[1][Bottom wall]

[2][Top wall]

[3][Right wall]

[4][Left wall]



FIGURE 1: A rectangular waveguide with perfectly conducting

walls, filled with a lossless material [Ref-1] .



Equations (1) and (3) need that A1 = 0 = A3 as in eq. (15 (from lecture II)), so

this eq. (15 (from lecture II)) turns into

here Eo = A2A4. If eqs. (2) and (4) when utilized to eq. (5) require,

correspondingly, that

sinkxa = 0 and sinkyb = 0 [6]

[5]Ezs = E0sin kxx sin kyy e-z

kxa = m,  when m = 1, 2, 3, . . . 

kyb = n,    when n = 1, 2, 3, . . . [8]

[7]

Finally, it suggests that



[9]

The negative integers are not chosen for m and n in eqs. (7) and (8) Now

putting the values of kx and ky from eq. (9) into eq. (5) that gives

[10]

Now to find other field components by eqs. (10) and using equations (24-27

(from lecture II)) by setting Hzs = 0. Thus-



[11]

[12]

[13]

[14]

[15]

where



which is achieved from eqs. (28 from last lect II) and (9). Observe from eqs. (10-

14) that each set of integers m and n provides a different field configuration or

mode, and it is represented by TMmn mode, in the waveguide.

Integer m equals the number of half-cycle deviations in the x-direction, and

integer n is the number of half-cycle deviations in the y-direction. We also

observe from eqs. (10-14) that if (m, n) is (0, 0), (m, 0), or (0, n), 0 2, every field

components disappear. Thus neither m nor n can be zero. Therefore, TM11 is the

lowest-order mode from all of the TMmn modes. Now, by putting eq. (9) into eq.

(28 from previous lecture II), we get the propagation constant-



[16]

[17]

where k =  ( )1/2. We know that, in general,  = +i. In the case of eq. (16),

we have three ways depending on k (or ), m, and n:

CASE I- [Cutoff]

where

If



The value of  that basis this is known as the cutoff angular frequency c;

that is,

[18]

Propagation does not take place at this frequency

If

In this case, we have no wave propagation at all. These non-propagating 

modes are said to be evanescent. 

CASE II- [Evanescent]



that is, from eq. (16) the phase constant  turns into

[19]

This is the single case in which propagation takes place, as all field

components will have the factor e-z = e-jz. Hence for each mode,

characterized by a set of integers m and n, there is a corresponding cutoff

frequency dentoed by fc.

CASE III [Propagation]

If 



The cutoff frequency is the operating frequency below which attenuation

occurs and above which propagation takes place.

❖The waveguide therefore works as a high-pass filter. The cutoff

frequency is achieved from eq. (18) as-

[20]



where u [ ] is representing the phase velocity of uniform plane

wave in the lossless dielectric medium ( = 0, , ) filling the waveguide. The

cutoff wavelength lc is given by

[21]

It is observed that from eqs. (20) and (21) that TM11 has the lowest cutoff

frequency (or the longest cutoff wavelength) of all the TM modes. The phase

constant  in eq. (19) can be written in terms of fc as-



[22]

where  = /u = ()1/2 phase constant of uniform plane wave in the

dielectric medium. It should be noted that  for evanescent mode can be

written in terms of fc, as-

[23]



The phase velocity up and the wavelength in the waveguide are, respectively,

defined as

The intrinsic wave impedance of the mode is determined by using eqs. (11-14) as

 = i

[24]



Where  = ( / )1/2 is the intrinsic impedance of a uniform plane wave in the

medium. Notice that the difference between u ,  , and  , and u, , and ,

the primed quantities are wave characteristics of the dielectric medium

unbounded by the waveguide, as earlier discussed in previous lecture II (i.e.,

for TEM mode). For instance, u would be the velocity of the wave if the

waveguide were detached and the whole space were filled with the dielectric.

The unprimed quantities are the wave characteristics of the medium

bounded by the waveguide.
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FIGURE 2: Field pattern for TM21 mode [Ref. 1]

As pointed out as earlier, the integers m and n show the number of half-cycle

variations in the x–y cross section of the waveguide. hence for a fixed time,

the field pattern of Figure 2 results for TM21 mode.
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• For any query/ problem contact me on whatsapp group or mail on me

E-mail: arvindkumar@mgcub.ac.in

• Next ----TE Modes will be discussed in next lecture.

## Stay at home. Stay safe and healthy 
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