Atomic and Molecular Physics Course Code: PHYS4009

Lecture Topic

Vibrational Spectroscopy

By

Prof. Sunil Kumar Srivastava

Department of Physics Mahatma Gandhi Central University Motihari, Bihar-845401

Please see the video lecture at https://www.youtube.com/watch?v=FYGA5bM_IWA

Introduction

Why Vibrational Spectroscopy?

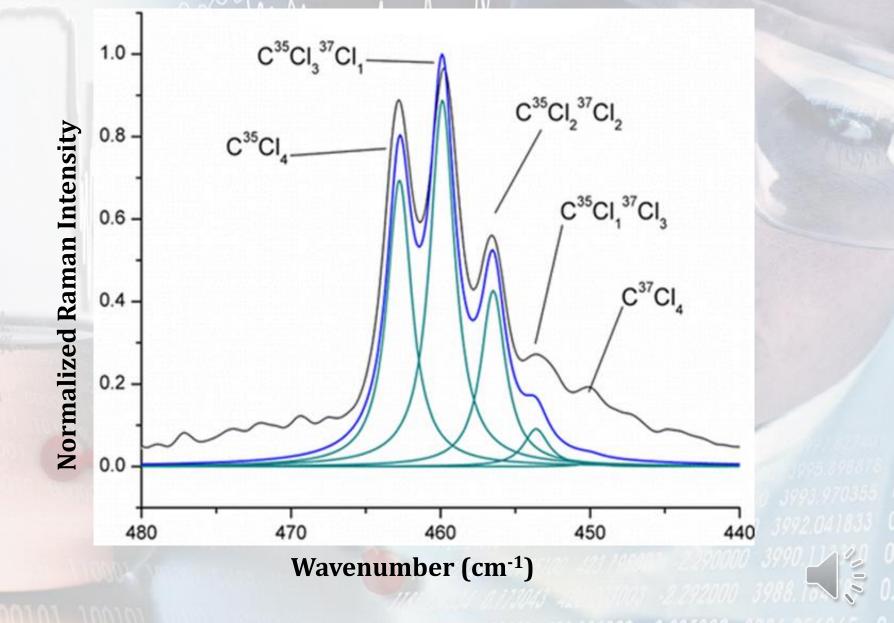
- For the identification of characteristic vibrational motion
- Structural information of the molecules
- Detection of functional groups
- Information about isotopes
- To study molecular interactions

Vibrational Spectroscopy

Vibrational Spectroscopy is a method of characterizing and identifying compounds that works by measuring the vibrational spectra of compounds. Each compound has a unique fingerprint or measurement of the vibrations, allowing compounds to be identified.

The vibrational spectra gives information about the composition, type of bonding, bond strength, isotopic substitution, information about functional group, complex species, etc.

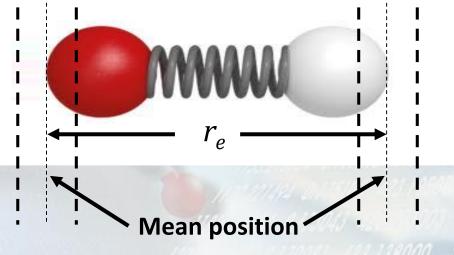
Vibrational Spectra



Gaynor et al. J. Chem. Educ. 2015, 92, 6, 1081-1085

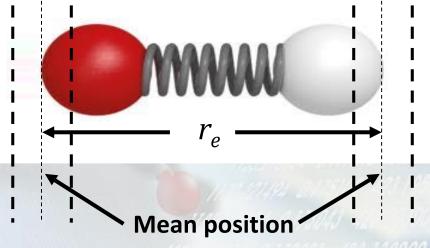
Origin of Vibrational Spectra

- Non-rigid nature of bonds
- Bond get stretched while rotation
- The elastic nature of bond causes vibration of atoms of the molecule about the mean position.



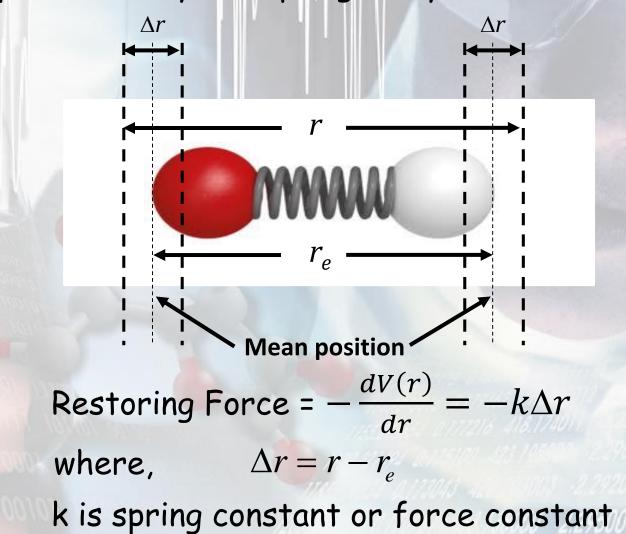
Origin of Vibrational Spectra

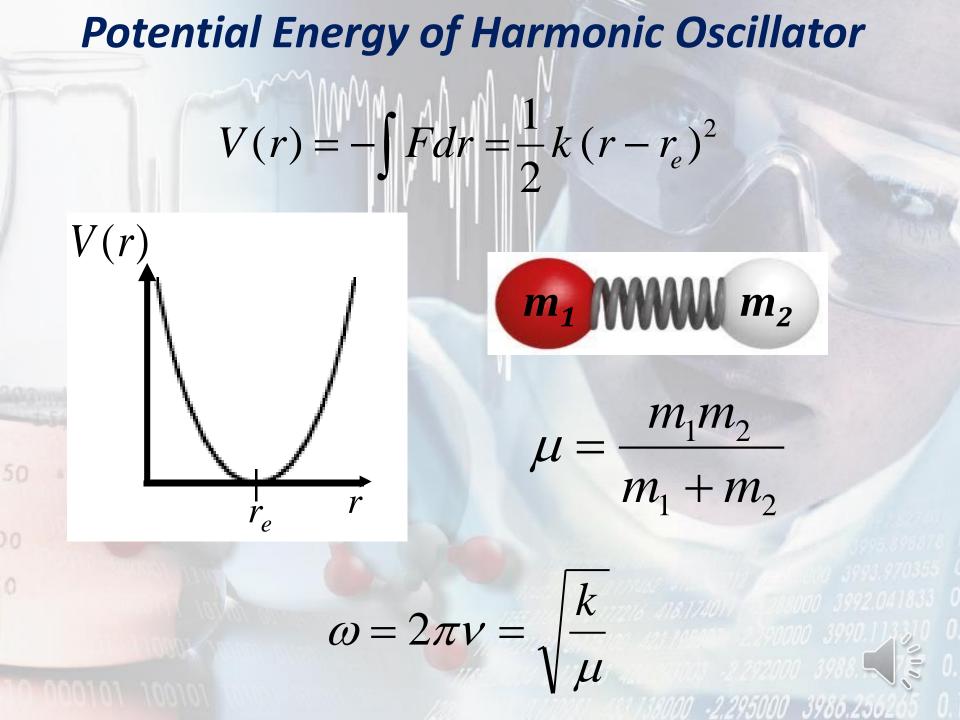
- Non-rigid nature of bonds
- Bond get stretched while rotation
- The elastic nature of bond causes vibration of atoms of the molecule about the mean position.



Classical Harmonic Oscillator

Consider simple case of a vibrating diatomic molecule, For small displacements the stretching and compression of the bond, represented by the spring, obeys Hooke's law.





Quantum Mechanical Harmonic Oscillator

MANMA AL MAN

$$H\psi_{vib} = E_{vib}\psi_{vib}$$

$$\left[-\frac{\hbar^2}{2\mu}\frac{\partial^2}{\partial r^2} + V(r)\right]\psi_{vib} = E_{vib}\psi_{vib}$$

$$V(r) = \frac{1}{2}k(r-r_e)^2$$

$$\frac{\partial^2 \psi_{vib}}{\partial r^2} + \frac{2\mu}{\hbar^2} \left[E_{vib} - \frac{1}{2} k (r - r_e)^2 \right] \psi_{vib} = 0$$

JY00.2301

Normalized Vibrational Wavefunction

 $\psi_{vib}(y) = \frac{(\alpha/\pi)^{\frac{1}{4}}}{\sqrt{2^n n!}} e^{\alpha r^2/2} H_n(y) \text{ where } y = \sqrt{\alpha r} \text{ and } \alpha = \frac{\mu \omega}{\hbar}$ $H_n(y)$ is Hermite polynomial $H_n(y) = (-1)^n e^{y^2} \frac{d^n}{dy^n} e^{-y^2}$ $n = 0: H_0(y) = 1$ $n = 1: H_1(y) = 2y$

$$n=2: H_2(y)=4y^2-2$$

 $n = 3: H_3(y) = 8y^3 - 12y$

 $n = 4: H_4(y) = 16y^4 - 48y^2 + 12$

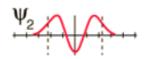
n = 5: $H_5(y) = 32y^5 - 160y^3 + 120y$

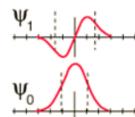
Normalized Vibrational Wavefunction

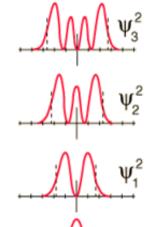
$$\psi_0 = \left(\frac{\alpha}{\pi}\right)^4 e^{-y^2/2}$$
$$\psi_1 = \left(\frac{\alpha}{\pi}\right)^4 \sqrt{2} y e^{-y^2/2}$$

$$\psi_2 = \left(\frac{\alpha}{\pi}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2}} (2y^2 - 1)e^{-y^2/2}$$

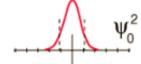
$$\psi_3 = \left(\frac{\alpha}{\pi}\right)^{\frac{1}{4}} \frac{1}{\sqrt{3}} (2y^3 - 3y)e^{-y^2/2}$$

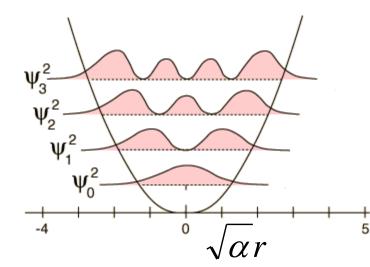






 $P(r) = \left| \psi_n(r) \right|^2$





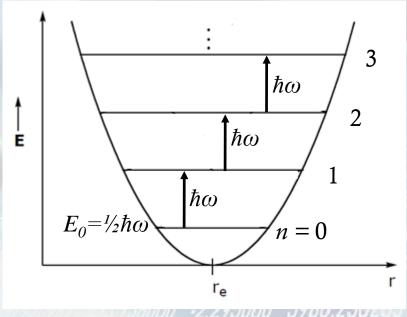
Energy of Vibrational States $E_{n} = \left(n + \frac{1}{2}\right) \frac{h}{2\pi} \sqrt{\frac{k}{\mu}} = \hbar \omega \left(n + \frac{1}{2}\right)$

Energy of each state: $E_n = (n + \frac{1}{2})\hbar\omega$

Energy level separation: $E(n+1) - E(n) = \hbar \omega$

Selection Rule

Harmonic Oscillator: $\Delta n = \pm 1$

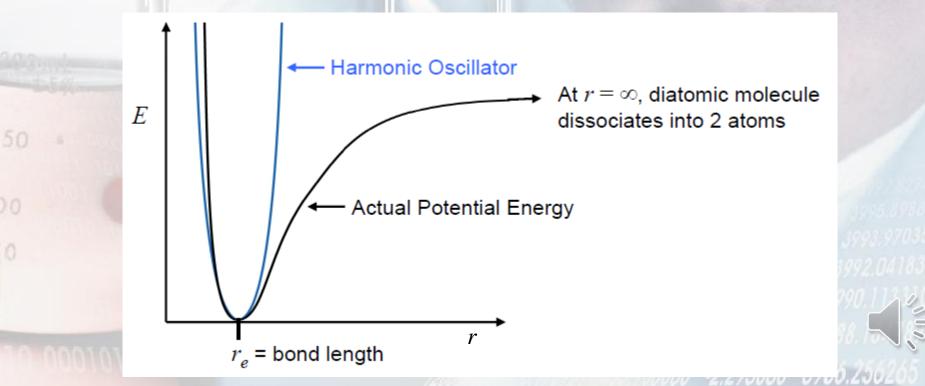


Limitations of Simple Harmonic Oscillator

Simple harmonic oscillator does not predict bond dissociation.

Simple harmonic oscillator fits well at low excitation but fits poorly at high excitation.

Simple harmonic oscillator explains only fundamental vibrations but not the overtones.

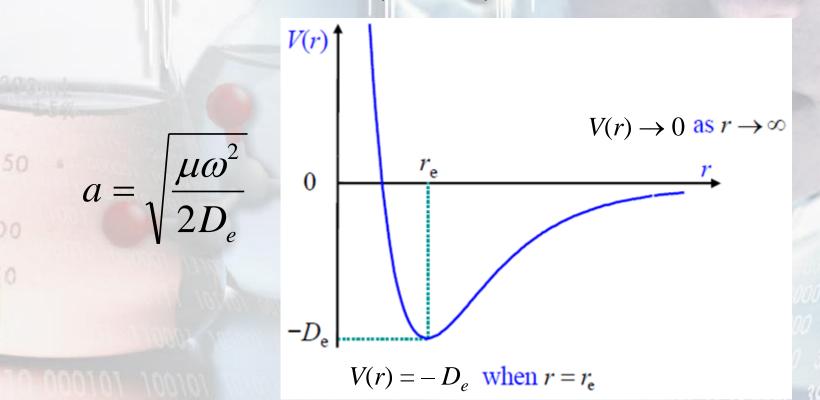


The Morse Potential

Morse potential give the better approximation to potential energy of vibrating diatomic molecules

$$V(r) = D_e \left[1 - e^{-a(r - r_e)} \right]^2 - D_e$$

 D_e is depth of potential well



Anharmonic Oscillator

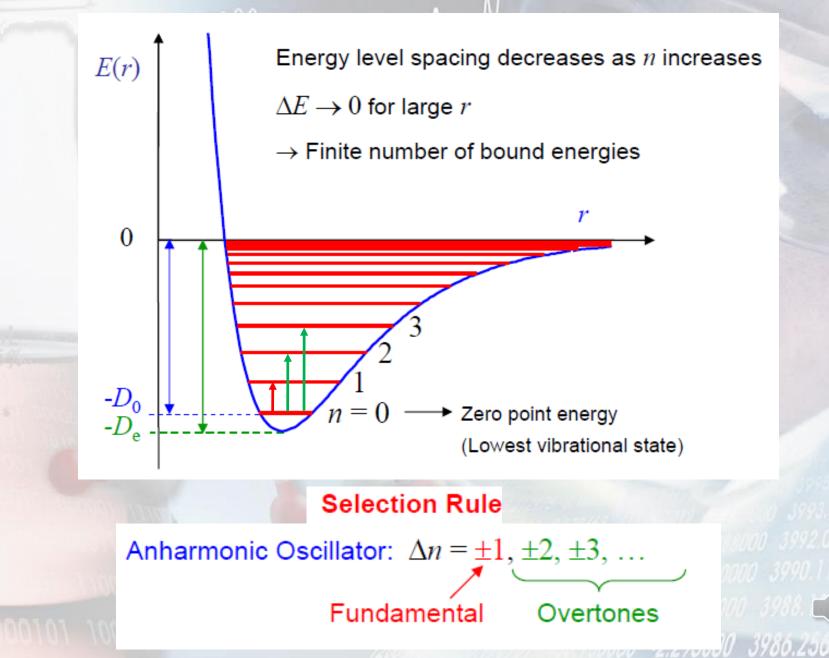
Schrödinger wave equation for the diatomic molecule with Morse potential is given by

$$\hat{H}\psi = E\psi = \begin{bmatrix} -\frac{\hbar^2}{2\mu} \frac{d^2}{dx^2} &+ D_e \left[1 - e^{-a(r-r_e)}\right]^2 \end{bmatrix} \psi(x) = E\psi(x)$$

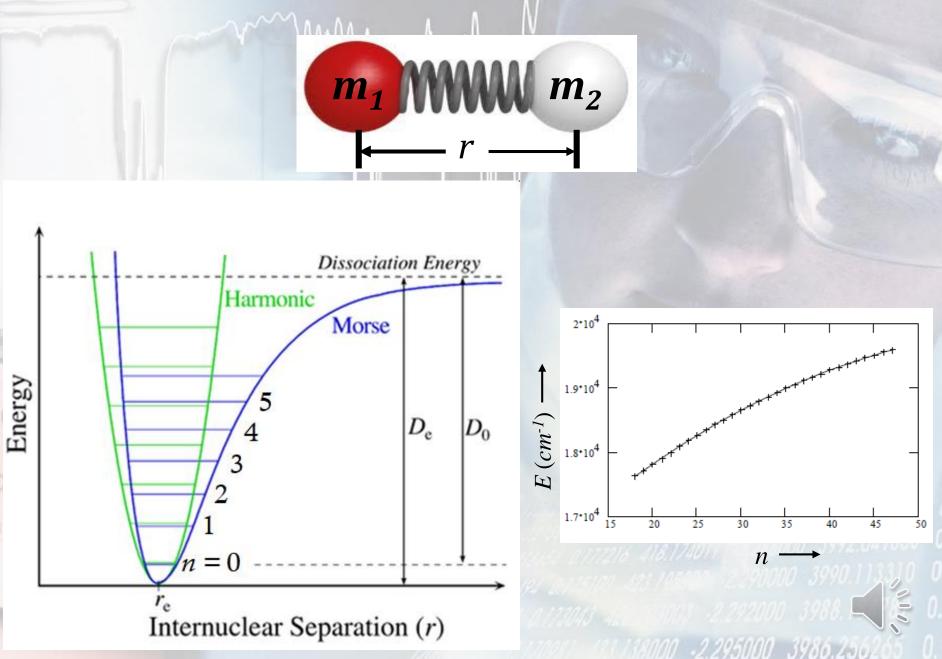
$$E_n = (n + \frac{1}{2})\hbar\omega_e - (n + \frac{1}{2})^2 x_e \hbar\omega_e \dots \text{(Joules)}$$
Where: $n = 0, 1, 2, 3$, Anharmonicity Constant: $x_e = \frac{a^2\hbar}{2\mu\omega_e}$
Recall: Energies of Harmonic Oscillator
$$E_n = (n + \frac{1}{2})\hbar\omega$$

$$E_n = (n + \frac{1}{2})\tilde{v}_e - (n + \frac{1}{2})^2 x_e \tilde{v}_e \quad (\text{cm}^{-1})$$

Vibrational Energy States



Harmonic vs Anharmonic Oscillator



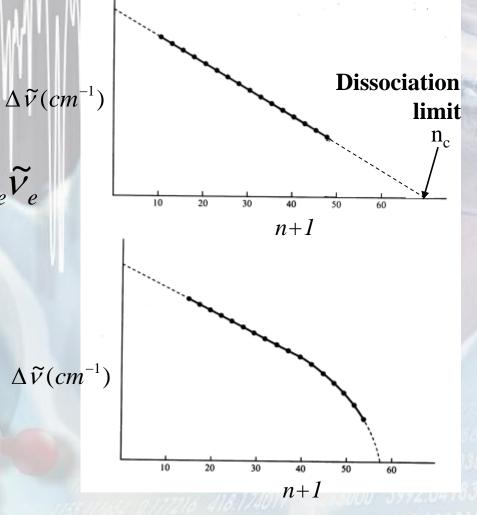
$\Delta \widetilde{\nu}(cm^{-1}) = E_{n+1} - E_n$

If higher order anharmonicity is negligible

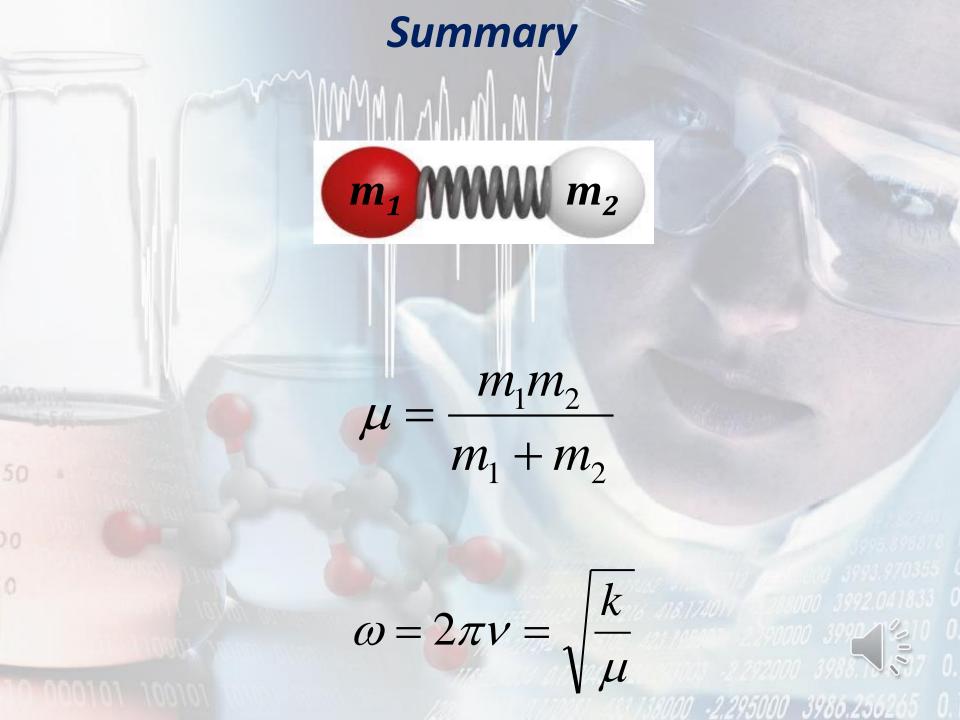
$$\Delta \widetilde{\nu}(cm^{-1}) = \widetilde{\nu}_e - 2(n+1)x_e\widetilde{\nu}_e$$

$$D_0 = \sum_{n=0}^{n=n_c} \Delta \widetilde{\nu} = \int_0^{n_c} \Delta \widetilde{\nu} dn$$

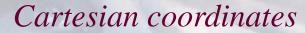
If higher order anharmonicity is not negligible



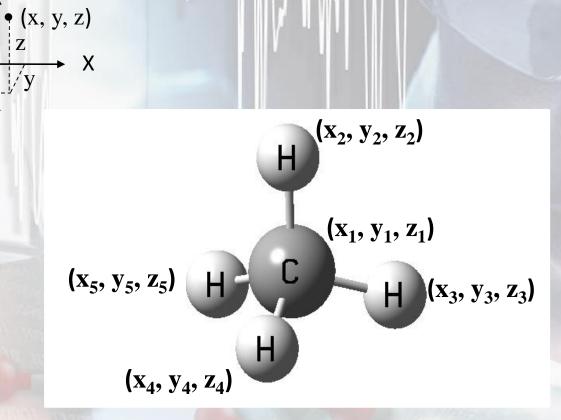
 $\Delta \tilde{v}(cm^{-1}) = \tilde{v}_e - 2(n+1)x_e \tilde{v}_e + (3n^2 + 6n + 13/4)y_e \tilde{v}_e +$



Vibrations in Polyatomic Molecule

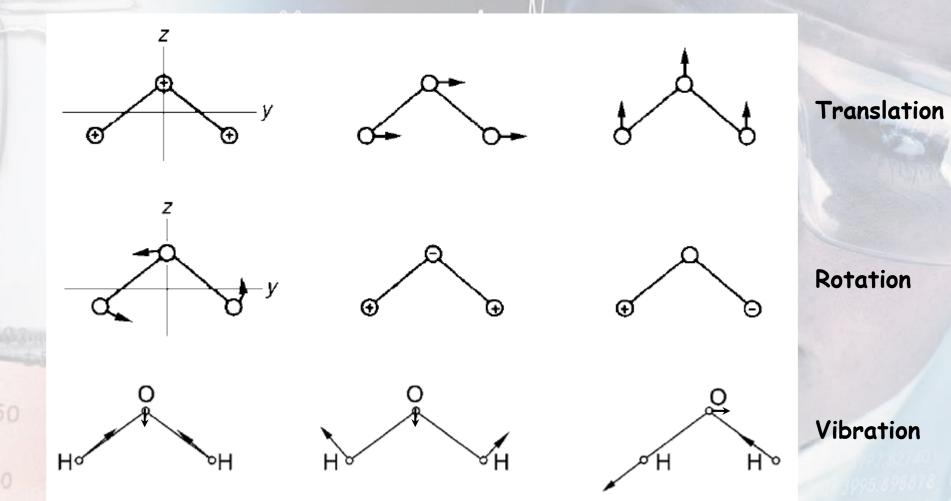


С	x ₁	y ₁	Z ₁
Η	x ₂	y ₂	Z ₂
Η	X ₃	У ₃	Z ₃
Η	X ₄	y ₄	\mathbf{Z}_4
Η	X ₅	У ₅	Z ₅



For molecule having N atoms: 3N Cartesian coordinates For molecule having N atoms: 3N Degree of Freedom

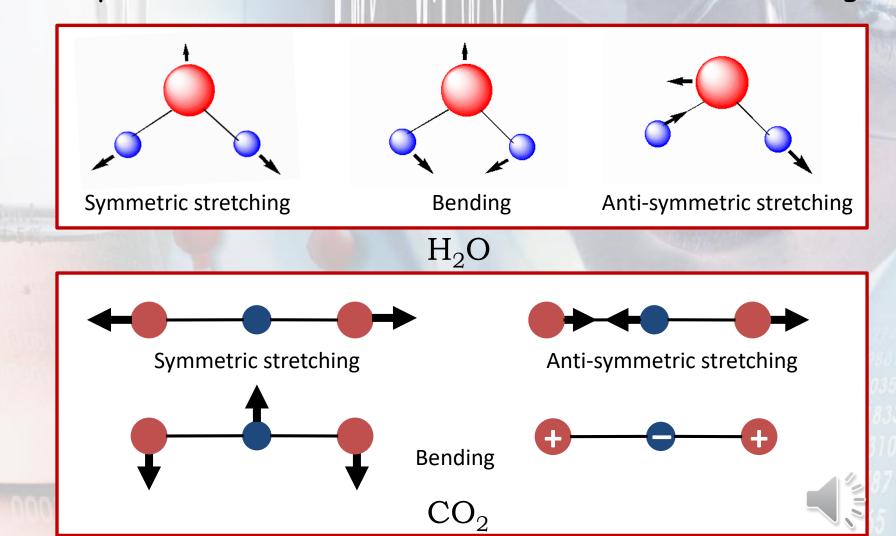
Distribution of 3N Degree of Freedom



The vibrational degree of freedom in molecule having N atom For non-linear molecule: 3N-6For linear molecule : 3N-5

Normal Mode of Vibration

A mode of vibration is called normal mode of vibration in which all atoms of a molecule oscillate with same frequency and in phase such that the center of mass must not change.



Books for Further Reading

1. Fundamentals of Molecular Spectroscopy by C. N. Banwell (McGraw Hill)

2. Basic Atomic & Molecular Spectroscopy by J. M. Hollas (Royal Society of Chemistry)

References:

http://hyperphysics.phy-astr.gsu.edu/hbase/index.html

