UNIT III

Organometallic Compounds II (Part I) B.Sc. (H) Chemistry

Dr. Rajanish N. Tiwari Department of Chemistry Mahatma Gandhi Central University

Ligands in Organometallic Chemistry

✓ Hundreds of ligands are known to bond to metal atoms through carbon.

✓ **Carbon monoxide** forms a very large number of metal complexes and deserves special mention, along with several similar diatomic ligands.

✓ Many organic molecules containing linear or cyclic pi systems also form numerous organometallic complexes.

Carbonyl (CO) Complexes

✓ Carbon monoxide is the most common ligand in organometallic chemistry.

✓ It serves as the only ligand in binary carbonyls such as Ni(CO)₄, W(CO)₆, and Fe₂(CO)₉ or, more commonly, in combination with other ligands, both organic and inorganic.

✓CO may bond to a single metal, or it may serve as a bridge between two or more metals

Bonding in CO

 \checkmark It is useful to review the bonding in CO. In MO diagram of CO, two features need to be give attention.

 \checkmark The **HOMO** has its largest lobe on carbon. It is through this orbital, occupied by an electron pair, that CO exerts its σ-donor function, donating electron density directly toward an appropriate metal orbital, such as an unfilled d or hybrid orbital.

✓ CO also has two empty π^* orbitals (**LUMO**); these also have larger lobes on carbon than on oxygen. A metal atom having electrons in a d orbital of suitable symmetry can donate electron density to these π^* orbitals.

 σ - donor and π -acceptor interactions are illustrated in Fig.1.

Fig. 1 σ and π interactions between CO and a Metal Atom

The overall effect is synergistic. CO can donate electron density via a σ orbital to a metal atom; the greater the electron density on the metal, the more effectively it can return electron density to the π^* orbitals of CO.

The strength of bonding depends on several factors, including the charge on the complex and the ligand environment of the metal.

Analysis of CO by Infrared spectroscopy

✓ Infrared spectroscopy is used to study to the bonding between CO and Metal.

✓Any change in the bonding between carbon and oxygen should be reflected in the C-O stretching vibration as observed by IR.

 \checkmark The C-O stretch in organometallic complexes is often very intense (change in dipole moment), and its energy often provides valuable information about the molecular structure.

✓ Free carbon monoxide has a C-O stretch at 2143 cm⁻¹. In Cr(CO)₆, C-O stretch at 2000 cm⁻¹. The lower energy for the stretching mode means that the C-O bond is weaker in Cr(CO)₆.

The energy necessary to stretch a bond is proportional to $\sqrt{\frac{k}{\mu}}$

Where, k = force constant $\mu = reduced mass$

Atoms of mass m_1 and m_2 , the reduced mass is given by

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

✓ The stronger the bond between two atoms, the larger the force constant; consequently, the greater the energy necessary to stretch the bond and the higher the energy of the corresponding band (the higher the wavenumber, in cm^{-1}) in the infrared spectrum.

✓ Similarly, the more massive the atoms involved in the bond, as reflected in a higher reduced mass, the less energy necessary to stretch the bond, and the lower the energy of the absorption in the infrared spectrum.

Both σ donation (which donates electron density from a bonding orbital on CO) and π acceptance (which places electron density in C-O antibonding orbitals) would be expected to weaken the C-O bond and to decrease the energy necessary to stretch that bond.

The charge on a carbonyl complex is also reflected in its infrared spectrum as shown in table below

Complex	v(CO), cm ⁻¹
[Ti(CO) ₆] ²⁻	1748
[V(CO) ₆] ⁻	1859
Cr(CO) ₆	2000
$[Mn(CO)_6]^+$	2100
[Fe(CO) ₆] ²⁺	2204

Where, $v(CO) = 2143 \text{ cm}^{-1}$ for free CO

✓ $[Ti(CO)_6]^{2-}$ contains the most highly reduced metal, formally containing Ti(2-); this means that titanium has the weakest ability to attract electrons and the greatest tendency to **back-donate electron density** to CO.

✓ The formal charges on the metals increase from -2 for $[Ti(CO)_6]^{2-}$ to +2 for $[Fe(CO)_6]^{2+}$.

✓ The titanium in $[Ti(CO)_6]^{2-}$, with the most negative formal charge, has the strongest tendency to donate to CO.

✓ The consequence is strong population of the π^* orbitals of CO in $[Ti(CO)_6]^{2-}$ and reduction of the strength of the C -O bond.

✓ In general, the more negative the charge on the organometallic species, the greater the tendency of the metal to donate electrons to the π^* orbitals of CO, and the lower the energy of the C -O stretching vibrations.

In free CO, the electrons are polarized toward the more electronegative oxygen.

the electrons in the π orbitals are concentrated nearer to the oxygen atom than to the carbon.

The presence of a transition metal cation reduces the polarization in the C-O bond by attracting the bonding electrons.

The consequence is that the electrons in the positively charged complex are more equally shared by the carbon and the oxygen, giving rise to a stronger bond and a higher-energy C-O stretch.

Bridging modes of CO

Type of CO	Approximate Range for <i>v</i> (CO) in Neutral Complexes (cm ⁻¹)
Free CO	2143
Terminal M — CO	1850-2120
Symmetric ^a μ_2 - CO M M	1700–1860
Symmetric ^a μ_3 - CO M M M	1600–1700
μ_4 -CO M M M M	< 1700 (few examples)

IR ranges of Bridging modes of CO

Assignment

Q 1. How is it possible for cationic carbonyl complexes such as $[Fe(CO)_6]^{2+}$ to have C-O stretching bands even higher in energy than those in free CO?

Free CO stretch at 2143 cm⁻¹

Q. 2. How does the strength of the bond increase ?

References:

(1) Miessler, Fischer & Tarr Inorganic Chemistry

(2) Shriver & Atkins Inorganic Chemistry

Thank You