Lecture-XI Programme: M. Sc. Physics

LIÉNARD - WIECHERT FIELDS DUE TO A POINT CHARGE

Dr. Arvind Kumar Sharma (Assistant Professor)
Department of Physics, Mahatma Gandhi
Central University, Motihari: 845401, Bihar

Contents

- Liénard - Wiechert Fields due to point charge
- Numerical Problems based Liénard - Wiechert Fields

The Fields of a Moving Point Charge

* In this lecture we will study about Liénard-Wiechert fields due to a moving point charge.
* To find the expressions for the fields (the electric and magnetic fields) of a point charge in arbitrary motion, we will use expressions of the Liénard-Wiechert potentials from the previous lecture X:

$$
\begin{equation*}
V(\mathbf{r}, t)=\frac{1}{4 \pi \epsilon_{0}} \frac{q c}{(\imath c-\imath \cdot \mathbf{v})}, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{A}(\mathbf{r}, t)=\frac{\mathbf{v}}{c^{2}} V(\mathbf{r}, t), \tag{2}
\end{equation*}
$$

As we know that relations for E and B:

$$
\begin{equation*}
\mathbf{E}=-\nabla V-\frac{\partial \mathbf{A}}{\partial t}, \quad \mathbf{B}=\nabla \times \mathbf{A} . \tag{3}
\end{equation*}
$$

*The differentiation is complicated, however, as

$$
\begin{equation*}
\boldsymbol{r}=\mathbf{r}-\mathbf{w}\left(t_{r}\right) \text { and } \mathbf{v}=\dot{\mathbf{w}}\left(t_{r}\right) \tag{4}
\end{equation*}
$$

are both determined at the retarded time, and t_{r} described implicitly by the equation

$$
\begin{equation*}
\left|\mathbf{r}-\mathbf{w}\left(t_{r}\right)\right|=c\left(t-t_{r}\right) \tag{5}
\end{equation*}
$$

is a function of r and t.

Let's start with the gradient of V :

$$
\begin{equation*}
\nabla V=\frac{q c}{4 \pi \epsilon_{0}} \frac{-1}{(\imath c-\imath \cdot \mathbf{v})^{2}} \nabla(\imath c-\imath \cdot \mathbf{v}) . \tag{6}
\end{equation*}
$$

Since $r=c\left(t-t_{r}\right)$,

$$
\begin{equation*}
\nabla r=-c \nabla t_{r} \tag{7}
\end{equation*}
$$

As for the second term, product rule provides

$$
\nabla(r \cdot v)=(r \cdot \nabla) v+(v \cdot \nabla) r+r \times(\nabla \times v)+v \times(\nabla \times r)
$$

Calculating these terms one at a moment:

$$
\begin{align*}
(r \cdot \nabla) \mathbf{v} & =\left(r_{x} \frac{\partial}{\partial x}+r_{y} \frac{\partial}{\partial y}+r_{z} \frac{\partial}{\partial z}\right) \mathbf{v}\left(t_{r}\right) \\
& =r_{x} \frac{d \mathbf{v}}{d t_{r}} \frac{\partial t_{r}}{\partial x}+r_{y} \frac{d \mathbf{v}}{d t_{r}} \frac{\partial t_{r}}{\partial y}+r_{z} \frac{d \mathbf{v}}{d t_{r}} \frac{\partial t_{r}}{\partial z} \\
& =\mathbf{a}\left(\boldsymbol{\imath} \cdot \nabla t_{r}\right), \tag{9}
\end{align*}
$$

Where $\mathbf{a} \equiv \dot{\mathbf{v}}$ is the acceleration of the particle at the retarded time. Now

$$
(\mathbf{v} \cdot \nabla) \varepsilon=(\mathbf{v} \cdot \nabla) r-(v \cdot \nabla) \mathbf{w}
$$

and

$$
\begin{aligned}
(\mathbf{v} \cdot \nabla) \mathbf{r} & =\left(v_{x} \frac{\partial}{\partial x}+v_{y} \frac{\partial}{\partial y}+v_{z} \frac{\partial}{\partial z}\right)(x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}) \\
& =v_{x} \hat{\mathbf{x}}+v_{y} \hat{\mathbf{y}}+v_{z} \hat{\mathbf{z}}=\mathbf{v},
\end{aligned}
$$

while

$$
(\mathbf{v} \cdot \nabla) \mathbf{w}=\mathbf{v}\left(\mathbf{v} \cdot \nabla \mathbf{t}_{\mathbf{r}}\right)
$$

(similar reasoning as Eq. 9). Moving on to the third term in Eq. 8,

$$
\boldsymbol{\nabla} \times \mathbf{v}=\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right) \hat{\mathbf{x}}+\left(\frac{\partial v_{x}}{\partial z}-\frac{\partial v_{z}}{\partial x}\right) \hat{\mathbf{y}}+\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right) \hat{\mathbf{z}}
$$

$$
\nabla \times \mathbf{v}=\left(\frac{d v_{z}}{d t_{r}} \frac{\partial t_{r}}{\partial y}-\frac{d v_{y}}{d t_{r}} \frac{\partial t_{r}}{\partial z}\right) \hat{\mathbf{x}}+\left(\frac{d v_{x}}{d t_{r}} \frac{\partial t_{r}}{\partial z}-\frac{d v_{z}}{d t_{r}} \frac{\partial t_{r}}{\partial x}\right) \hat{\mathbf{y}}+\left(\frac{d v_{y}}{d t_{r}} \frac{\partial t_{r}}{\partial x}-\frac{d v_{x}}{d t_{r}} \frac{\partial t_{r}}{\partial y}\right) \hat{\mathbf{z}}
$$

$$
\begin{equation*}
\nabla \times \mathbf{v}=-\mathbf{a} \times \nabla t_{r} \tag{12}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\boldsymbol{\nabla} \times r=\boldsymbol{\nabla} \times \mathbf{r}-\boldsymbol{\nabla} \times \mathbf{w} \tag{13}
\end{equation*}
$$

although $\nabla \times r=0$, whilst, by the similar argument as Eq. 12,

$$
\begin{equation*}
\nabla \times w=-v \times \nabla t_{r} \tag{14}
\end{equation*}
$$

* Substituting all this back into Eq. 8, and utilizing the "BAC-CAB" rule to short the triple cross products,

$$
\nabla(\imath \cdot \mathbf{v})=\mathbf{a}\left(\imath \cdot \nabla t_{r}\right)+\mathbf{v}-\mathbf{v}\left(\mathbf{v} \cdot \nabla t_{r}\right)-\imath \times\left(\mathbf{a} \times \nabla t_{r}\right)+\mathbf{v} \times\left(\mathbf{v} \times \nabla t_{r}\right)
$$

$$
\begin{equation*}
\nabla(r \cdot v)=v+\left(r \cdot a-v^{2}\right) \nabla t_{r} \tag{15}
\end{equation*}
$$

assembling Eqs. 7 and 15, we have

$$
\begin{equation*}
\nabla V=\frac{q c}{4 \pi \epsilon_{0}} \frac{1}{(\imath c-\imath \cdot \mathbf{v})^{2}}\left[\mathbf{v}+\left(c^{2}-v^{2}+\imath \cdot \mathbf{a}\right) \nabla t_{r}\right] . \tag{16}
\end{equation*}
$$

To finalize this formulation, we require to know ∇t_{r}. This can be established by taking the gradient from equation (Eq. 5) which we have already done in Eq. 7—and expanding $\nabla \varkappa$:

$$
-c \nabla t_{r}=\nabla r=\nabla \sqrt{\imath \cdot \imath}=\frac{1}{2 \sqrt{\imath \cdot n}} \nabla(\imath \cdot \imath)
$$

$$
\begin{equation*}
-c \nabla t_{r}=\frac{1}{r}[(\imath \cdot \nabla) r+\imath \times(\nabla \times r)] . \tag{17}
\end{equation*}
$$

But

$$
(r \cdot \nabla) r=r-v\left(r \cdot \nabla t_{r}\right)
$$

(similar thought as Eq. 10), while (from Eqs. 13 and 14)

$$
\nabla \times r=\left(v \times \nabla t_{r}\right)
$$

Thus

$$
-c \nabla t_{r}=1 / \imath\left[r-v(\imath \cdot \nabla t r)+\tau \times\left(v \times \nabla t_{r}\right)\right]=1 / r\left[\imath-(\imath \cdot v) \nabla t_{r}\right]
$$

and thus

$$
\nabla t_{r}=\frac{-\imath}{\imath c-\imath \cdot \mathbf{v}}
$$

Incorporating this result into Eq. 16, we finish that

$$
\begin{equation*}
\nabla V=\frac{1}{4 \pi \epsilon_{0}} \frac{q c}{(\imath c-r \cdot \mathbf{v})^{3}}\left[(\imath c-r \cdot \mathbf{v}) \mathbf{v}-\left(c^{2}-v^{2}+r \cdot \mathbf{a}\right) r\right] . \tag{22}
\end{equation*}
$$

A similar calculation,

$$
\begin{aligned}
\frac{\partial \mathbf{A}}{\partial t}=\frac{1}{4 \pi \epsilon_{0}} \frac{q c}{(\varkappa c-r \cdot \mathbf{v})^{3}} & {[(\varkappa c-r \cdot \mathbf{v})(-\mathbf{v}+r \mathbf{a} / c)} \\
& \left.+\frac{r}{c}\left(c^{2}-v^{2}+r \cdot \mathbf{a}\right) \mathbf{v}\right] .
\end{aligned}
$$

merging these outcomes, and setting up the vector

$$
\mathbf{u} \equiv c \hat{\imath}-\mathbf{v},
$$

We get

$$
\begin{equation*}
\mathbf{E}(\mathbf{r}, t)=\frac{q}{4 \pi \epsilon_{0}} \frac{r}{(r \cdot \mathbf{u})^{3}}\left[\left(c^{2}-v^{2}\right) \mathbf{u}+r \times(\mathbf{u} \times \mathbf{a})\right] . \tag{24}
\end{equation*}
$$

Meanwhile

$$
\begin{equation*}
\boldsymbol{\nabla} \times \mathbf{A}=\frac{1}{c^{2}} \boldsymbol{\nabla} \times(V \mathbf{v})=\frac{1}{c^{2}}[V(\nabla \times \mathbf{v})-\mathbf{v} \times(\nabla V)] \tag{25}
\end{equation*}
$$

* We have already determined $\nabla \times v$ (Eq. 12) and ∇V (Eq. 22). Substituting these jointly,

$$
\begin{equation*}
\nabla \times \mathbf{A}=-\frac{1}{c} \frac{q}{4 \pi \epsilon_{0}} \frac{1}{(\mathbf{u} \cdot \boldsymbol{\imath})^{3}} \boldsymbol{\imath} \times\left[\left(c^{2}-v^{2}\right) \mathbf{v}+(\boldsymbol{\imath} \cdot \mathbf{a}) \mathbf{v}+(\boldsymbol{\imath} \cdot \mathbf{u}) \mathbf{a}\right] . \tag{26}
\end{equation*}
$$

The quantity in brackets is noticeably similar to to the one in Eq. 24, which can be marked, using the BAC-CAB rule, as $\left[\left(c^{2}-v^{2}\right) u+(r \cdot a) u-\right.$ (r-u)a];

The key difference is that we have v's in its place of u's in the initial two terms. In reality, as it is all crossed into r anyway, we can with impunity alter these v's into -u's; the additional term proportional to r vanishes in the cross product.

It follows that

$$
\mathbf{B}(\mathbf{r}, t)=\frac{1}{c} \hat{\imath} \times \mathbf{E}(\mathbf{r}, t) .
$$

* It is clear that the magnetic field of a point charge is always perpendicular to the electric field, and to the vector from the retarded point.
* The first term in equation (24), E (the one connecting ($c^{2}-v^{2}$) u falls off as the inverse square of the distance from the particle.
* If the velocity and acceleration are both zero, then the equation
(24) turns into the old electrostatic result

$$
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{2} .
$$

* For this basis, the first term in E is sometimes known as the well familiar Coulomb field. (since it does not depend on the acceleration, it is also called the velocity field.)
*The second term (the one linking $\tau \times(u \times a)$) falls off as the inverse first power of \imath and is thus leading at large distances. This term is responsible for electromagnetic radiation; hence, it is known as the radiation field-or, since it is proportional to a, the acceleration field.

Numerical problems

1. Calculate the electric and magnetic fields of a point charge moving with constant velocity.
2. Suppose a point charge q is constrained to move along the x axis. Show that the fields at points on the axis to the right of the charge are given by. $\quad \mathbf{E}=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{r^{2}}\left(\frac{c+v}{c-v}\right) \hat{\mathbf{x}}, \quad \mathbf{B}=\mathbf{0}$.
(Do not assume v is constant!) What are the fields on the axis to the left of the charge?
3. For a point charge moving at constant velocity, calculate the flux integral $\oint \mathbf{E} \cdot d$ (using Eq. 10.75), over the surface of a sphere centered at the present location of the charge.

References:

1. Introduction to Electrodynamics, David J. Griffiths
2. Elements of Electromagnetics, $2^{\text {nd }}$ edition by M NO Sadiku
3. Engineering Electromagnetics by W H Hayt and J A Buck.
4. Elements of Electromagnetic Theory \& Electrodynamics, Satya Prakash

- For any query/ problem contact me on whatsapp group or mail on me E-mail: arvindkumar@mgcub.ac.in
- Next *** we will discuss electric dipole radiation and numerical problems based on radiation topic.

